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Chapter 1

Six proofs of the infinity of primes

Theorem 1.1 (Euclid’s proof). A finite set {𝑝1, … , 𝑝𝑟} cannot be the collection of all prime
numbers.

Proof. For any finite set {𝑝1, … , 𝑝𝑟}, consider the number 𝑛 = 𝑝1𝑝2 … 𝑝𝑟 + 1. This 𝑛 has a prime
divisor 𝑝. But 𝑝 is not one of the 𝑝𝑖s: otherwise 𝑝 would be a divisor of 𝑛 and of the product
𝑝1𝑝2 … 𝑝𝑟, and thus also of the difference 𝑛 − 𝑝1𝑝2 … 𝑝𝑟 = 1, which is impossible. So a finite set
{𝑝1, … , 𝑝𝑟} cannot be the collection of all prime numbers.

Theorem 1.2 (Second Proof). Any two Fermat numbers 𝐹𝑛 ∶= 22𝑛 + 1 are relatively prime.

Proof. Let us first look at the Fermat numbers 𝐹𝑛 = 22𝑛 + 1 for 𝑛 = 0, 1, 2, …. We will show
that any two Fermat numbers are relatively prime; hence there must be infinitely many primes.
To this end, we verify the recursion

𝑛−1
∏
𝑘=0

𝐹𝑘 = 𝐹𝑛 − 2,

from which our assertion follows immediately. Indeed, if 𝑚 is a divisor of, say, 𝐹𝑘 and 𝐹𝑛 (with
𝑘 < 𝑛), then 𝑚 divides 2, and hence 𝑚 = 1 or 2. But 𝑚 = 2 is impossible since all Fermat
numbers are odd. To prove the recursion we use induction on 𝑛. For 𝑛 = 1, we have 𝐹0 = 3 and
𝐹1 − 2 = 3. With induction we now conclude

𝑛
∏
𝑘=0

𝐹𝑘 = (
𝑛−1
∏
𝑘=0

𝐹𝑘) 𝐹𝑛 = (𝐹𝑛 − 2)𝐹𝑛 = (22𝑛 − 1)(22𝑛 + 1) = 22𝑛+1 − 1 = 𝐹𝑛+1 − 2.

Theorem 1.3 (Third Proof). There is no largest prime.

Proof. Suppose ℙ is finite and 𝑝 is the largest prime. We consider the so-called Mersenne number
2𝑝 − 1 and show that any prime factor 𝑞 of 2𝑝 − 1 is bigger than 𝑝, which will yield the desired
conclusion. Let 𝑞 be a prime dividing 2𝑝 − 1, so we have 2𝑝 ≡ 1 (mod 𝑞). Since 𝑝 is prime,
this means that the element 2 has order 𝑝 in the multiplicative group ℤ𝑞 ∖ {0} of the field ℤ𝑞.
This group has 𝑞 − 1 elements. By Lagrange’s theorem, we know that the order of every element
divides the size of the group, that is, we have 𝑝 ∣ 𝑞 − 1, and hence 𝑝 < 𝑞.

Theorem 1.4 (Fourth Proof). The prime counting function is unbounded
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Proof. Let 𝜋(𝑥) ∶= #{𝑝 ≤ 𝑥 ∶ 𝑝 ∈ ℙ} be the number of primes that are less than or equal to
the real number 𝑥. We number the primes ℙ = {𝑝1, 𝑝2, 𝑝3, … } in increasing order. Consider the
natural logarithm log 𝑥, defined as

log 𝑥 = ∫
𝑥

1

1
𝑡 𝑑𝑡.

Now we compare the area below the graph of 𝑓(𝑡) = 1
𝑡 with an upper step function. (See also

the appendix for this method.) Thus for 𝑛 ≤ 𝑥 < 𝑛 + 1 we have

log 𝑥 ≤ 1 + 1
2 + 1

3 + ⋯ + 1
𝑛 − 1 + 1

𝑛 ≤ ∑ 1
𝑚,

where the sum extends over all 𝑚 ∈ ℕ which have only prime divisors 𝑝 ≤ 𝑥.
Since every such 𝑚 can be written in a unique way as a product of the form ∏𝑝≤𝑥 𝑝𝑘𝑝 , we

see that the last sum is equal to

∏
𝑝∈ℙ,𝑝≤𝑥

(∑
𝑘≥0

1
𝑝𝑘 ) .

The inner sum is a geometric series with ratio 1
𝑝 , hence

log 𝑥 ≤ ∏
𝑝≤𝑥

1
1 − 1

𝑝
= ∏

𝑝≤𝑥

𝑝
𝑝 − 1 =

𝜋(𝑥)
∏
𝑘=1

𝑝𝑘
𝑝𝑘 − 1.

Now clearly 𝑝𝑘 ≥ 𝑘 + 1, and thus

𝑝𝑘
𝑝𝑘 − 1 = 1 + 1

𝑝𝑘 − 1 ≤ 1 + 1
𝑘 = 𝑘 + 1

𝑘 ,

and therefore

log 𝑥 ≤
𝜋(𝑥)
∏
𝑘=1

𝑘 + 1
𝑘 = 𝜋(𝑥) + 1.

Everybody knows that log 𝑥 is not bounded, so we conclude that 𝜋(𝑥) is unbounded as well,
and so there are infinitely many primes.

Theorem 1.5 (Fifth Proof). The set of primes ℙ is infinite.

Proof. Consider the following curious topology on the set ℤ of integers. For 𝑎, 𝑏 ∈ ℤ, 𝑏 > 0, we
set

𝑁𝑎,𝑏 = {𝑎 + 𝑛𝑏 ∶ 𝑛 ∈ ℤ}.
Each set 𝑁𝑎,𝑏 is a two-way infinite arithmetic progression. Now call a set 𝑂 ⊆ ℤ open if

either 𝑂 is empty, or if to every 𝑎 ∈ 𝑂 there exists some 𝑏 > 0 with 𝑁𝑎,𝑏 ⊆ 𝑂. Clearly, the union
of open sets is open again. If 𝑂1, 𝑂2 are open, and 𝑎 ∈ 𝑂1 ∩𝑂2 with 𝑁𝑎,𝑏1

⊆ 𝑂1 and 𝑁𝑎,𝑏2
⊆ 𝑂2,

then 𝑎 ∈ 𝑁𝑎,𝑏1𝑏2
⊆ 𝑂1 ∩ 𝑂2. So we conclude that any finite intersection of open sets is again

open. Therefore, this family of open sets induces a bona fide topology on ℤ.
Let us note two facts: Consider the following curious topology on the set ℤ of integers. For

𝑎, 𝑏 ∈ ℤ, 𝑏 > 0, we set

2



𝑁𝑎,𝑏 = {𝑎 + 𝑛𝑏 ∶ 𝑛 ∈ ℤ}.
Each set 𝑁𝑎,𝑏 is a two-way infinite arithmetic progression. Now call a set 𝑂 ⊆ ℤ open if

either 𝑂 is empty, or if to every 𝑎 ∈ 𝑂 there exists some 𝑏 > 0 with 𝑁𝑎,𝑏 ⊆ 𝑂. Clearly, the union
of open sets is open again. If 𝑂1, 𝑂2 are open, and 𝑎 ∈ 𝑂1 ∩𝑂2 with 𝑁𝑎,𝑏1

⊆ 𝑂1 and 𝑁𝑎,𝑏2
⊆ 𝑂2,

then 𝑎 ∈ 𝑁𝑎,𝑏1𝑏2
⊆ 𝑂1 ∩ 𝑂2. So we conclude that any finite intersection of open sets is again

open. Therefore, this family of open sets induces a bona fide topology on ℤ.
Let us note two facts:

(A) Any nonempty open set is infinite.

(B) Any set 𝑁𝑎,𝑏 is closed as well.

Indeed, the first fact follows from the definition. For the second, we observe

𝑁𝑎,𝑏 = ℤ ∖
𝑏−1
⋃
𝑖=1

𝑁𝑎+𝑖,𝑏,

which proves that 𝑁𝑎,𝑏 is the complement of an open set and hence closed.
So far, the primes have not yet entered the picture — but here they come. Since any number

𝑛 ≠ 1, −1 has a prime divisor 𝑝, and hence is contained in 𝑁0,𝑝, we conclude

ℤ ∖ {1, −1} = ⋃
𝑝∈ℙ

𝑁0,𝑝.

Now if ℙ were finite, then ⋃𝑝∈ℙ 𝑁0,𝑝 would be a finite union of closed sets (by (B)), and hence
closed. Consequently, {1, −1} would be an open set, in violation of (A).

Theorem 1.6 (Sixth Proof). The series ∑𝑝∈ℙ
1
𝑝 diverges.

Proof. Our final proof goes a considerable step further and demonstrates not only that there are
infinitely many primes, but also that the series ∑𝑝∈ℙ

1
𝑝 diverges. The first proof of this important

result was given by Euler (and is interesting in its own right), but our proof, devised by Erdős,
is of compelling beauty.

Let 𝑝1, 𝑝2, 𝑝3, … be the sequence of primes in increasing order, and assume that ∑𝑝∈ℙ
1
𝑝

converges. Then there must be a natural number 𝑘 such that ∑𝑖≥𝑘+1
1
𝑝𝑖

< 1
2 . Let us call

𝑝1, … , 𝑝𝑘 the small primes, and 𝑝𝑘+1, 𝑝𝑘+2, … the big primes. For an arbitrary natural number
𝑁 , we therefore find

∑
𝑖≥𝑘+1

𝑁
𝑝𝑖

< 𝑁
2 . (1)

Let 𝑁𝑏 be the number of positive integers 𝑛 ≤ 𝑁 which are divisible by at least one big
prime, and 𝑁𝑠 the number of positive integers 𝑛 ≤ 𝑁 which have only small prime divisors. We
are going to show that for a suitable 𝑁

𝑁𝑏 + 𝑁𝑠 < 𝑁,
which will be our desired contradiction, since by definition 𝑁𝑏 + 𝑁𝑠 would have to be equal

to 𝑁 .
To estimate 𝑁𝑏, note that ⌊ 𝑁

𝑝𝑖
⌋ counts the positive integers 𝑛 ≤ 𝑁 which are multiples of 𝑝𝑖.

Hence by (1) we obtain
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𝑁𝑏 ≤ ∑
𝑖≥𝑘+1

⌊𝑁
𝑝𝑖

⌋ < 𝑁
2 . (2)

Let us now look at 𝑁𝑠. We write every 𝑛 ≤ 𝑁 which has only small prime divisors in the
form 𝑛 = 𝑎𝑛𝑏2

𝑛, where 𝑎𝑛 is the square-free part. Every 𝑎𝑛 is thus a product of different small
primes, and we conclude that there are precisely 2𝑘 different square-free parts. Furthermore, as
𝑏2

𝑛 ≤ 𝑛 ≤ 𝑁 , we find that there are at most
√

𝑁 different square parts, and so

𝑁𝑠 ≤ 2𝑘√
𝑁.

Since (2) holds for any 𝑁 , it remains to find a number 𝑁 with 2𝑘√
𝑁 < 𝑁

2 , or 2𝑘+1 <
√

𝑁 ,
and for this 𝑁 = 22𝑘+2 will do.

1.1 Appendix: Infinitely many more proofs
Theorem 1.7. If the sequence 𝑆 = (𝑠1, 𝑠2, 𝑠3, … ) is almost injective and of subexponential
growth, then the set ℙ𝑆 of primes that divide some member of 𝑆 is infinite.

Proof.

Theorem 1.8 (Infinity of primes). There are infinitely many primes. (Six + infinitely many
proofs)

Proof. See theorems in this chapter.
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Chapter 2

Bertrand’s postulate

Theorem 2.1. For any positive natural number, there is a prime which is greater than it, but
no more than twice as large.

Proof. TODO: make this follow the book proof more closely!

2.1 Appendix: Some estimates
Theorem 2.2. For all 𝑛 ∈ ℕ

log 𝑛 + 1
𝑛 < 𝐻𝑛 < log 𝑛 + 1.

Proof. TODO

Theorem 2.3. For all 𝑛 ∈ ℕ

𝑛! = 𝑛(𝑛 − 1)! < 𝑛𝑒𝑛 log 𝑛−𝑛+1 = 𝑒 (𝑛
𝑒 )

𝑛
.

Proof. TODO

Theorem 2.4.
(𝑛

𝑘) ≤ 𝑛𝑘

𝑘! ≤ 𝑛𝑘

2𝑘−1

Proof. TODO
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Chapter 3

Binomial coefficients are (almost)
never powers

Theorem 3.1 (Sylvester’s theorem). For all natural 𝑛, 𝑘 such that 𝑛 ≥ 2𝑘, at least one of the
numbers 𝑛, 𝑛 − 1, … , 𝑛 − 𝑘 − 1 has a prime divisor 𝑝 greater than 𝑘, or, equivalently the binomial
coefficient (𝑛

𝑘) always has a prime factor 𝑝 > 𝑘.

Proof. TODO

Theorem 3.2 (Binomial coefficients are (almost) never powers). The equation (𝑛
𝑘) = 𝑚𝑙 has no

integer solutions with 𝑙 ≥ 2 and 4 ≤ 𝑘 ≤ 𝑛 − 4.

Proof. Note first that we may assume 𝑛 ≥ 2𝑘 because of (𝑛
𝑘) = ( 𝑛

𝑛−𝑘). Suppose the theorem is
false, and that (𝑛

𝑘) = 𝑚ℓ. The proof, by contradiction, proceeds in the following four steps.

1. By Sylvester’s theorem 3.1, there is a prime factor 𝑝 of (𝑛
𝑘) greater than 𝑘, hence 𝑝ℓ divides

𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1). Clearly, only one of the factors 𝑛 − 𝑖 can be a multiple of 𝑝 (because
𝑝 > 𝑘), and we conclude 𝑝ℓ ∣ 𝑛 − 𝑖, and therefore

𝑛 ≥ 𝑝ℓ > 𝑘ℓ ≥ 𝑘2.

2. Consider any factor 𝑛 − 𝑗 of the numerator and write it in the form 𝑛 − 𝑗 = 𝑎𝑗𝑚ℓ
𝑗, where

𝑎𝑗 is not divisible by any nontrivial ℓ-th power. We note by (1) that 𝑎𝑗 has only prime
divisors less than or equal to 𝑘. We want to show next that 𝑎𝑖 ≠ 𝑎𝑗 for 𝑖 ≠ 𝑗. Assume to
the contrary that 𝑎𝑖 = 𝑎𝑗 for some 𝑖 < 𝑗. Then 𝑚𝑖 > 𝑚𝑗 + 1 and

𝑘 > (𝑛 − 𝑖) − (𝑛 − 𝑗) = 𝑎𝑗(𝑚ℓ
𝑖 − 𝑚ℓ

𝑗) ≥ 𝑎𝑗((𝑚𝑗 + 1)ℓ − 𝑚ℓ
𝑗) (3.1)

> 𝑎𝑗ℓ𝑚ℓ−1
𝑗 ≥ ℓ(𝑎𝑗𝑚ℓ

𝑗)1/2 ≥ ℓ(𝑛 − 𝑘 + 1)1/2 (3.2)

≥ ℓ (𝑛
2 )

1/2
> 𝑛1/2, (3.3)

which contradicts 𝑛 > 𝑘2 from above.

3. Next we prove that the 𝑎𝑖’s are the integers 1, 2, … , 𝑘 in some order. (According to Erdős,
this is the crux of the proof.) Since we already know that they are all distinct, it suffices
to prove that

𝑎0𝑎1 … 𝑎𝑘−1 divides 𝑘!.
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Substituting 𝑛 − 𝑗 = 𝑎𝑗𝑚ℓ
𝑗 into the equation (𝑛

𝑘) = 𝑚ℓ, we obtain

𝑎0𝑎1 … 𝑎𝑘−1(𝑚0𝑚1 … 𝑚𝑘−1)ℓ = 𝑘!𝑚ℓ.

Canceling the common factors of 𝑚0 … 𝑚𝑘−1 and 𝑚 yields

𝑎0𝑎1 … 𝑎𝑘−1𝑢ℓ = 𝑘!𝑣ℓ

with gcd(𝑢, 𝑣) = 1. It remains to show that 𝑣 = 1. If not, then 𝑣 contains a prime divisor
𝑝. Since gcd(𝑢, 𝑣) = 1, 𝑝 must be a prime divisor of 𝑎0𝑎1 … 𝑎𝑘−1 and hence is less than or
equal to 𝑘. By the theorem of Legendre (see page 8), we know that 𝑘! contains 𝑝 to the
power ∑𝑖≥1 ⌊ 𝑘

𝑝𝑖 ⌋. We now estimate the exponent of 𝑝 in 𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1). Let 𝑖 be a
positive integer, and let 𝑏1 < 𝑏2 < ⋯ < 𝑏𝑠 be the multiples of 𝑝𝑖 among 𝑛, 𝑛−1, … , 𝑛−𝑘+1.
Then 𝑏𝑠 = 𝑏1 + (𝑠 − 1)𝑝𝑖 and hence

(𝑠 − 1)𝑝𝑖 = 𝑏𝑠 − 𝑏1 ≤ 𝑛 − (𝑛 − 𝑘 + 1) = 𝑘 − 1,

which implies
𝑠 ≤ ⌊𝑘 − 1

𝑝𝑖 ⌋ + 1 ≤ ⌊ 𝑘
𝑝𝑖 ⌋ + 1.

So for each 𝑖, the number of multiples of 𝑝𝑖 among 𝑛, … , 𝑛 − 𝑘 + 1, and hence among the
𝑎𝑗’s, is bounded by ⌊ 𝑘

𝑝𝑖 ⌋ + 1. This implies that the exponent of 𝑝 in 𝑎0𝑎1 … 𝑎𝑘−1 is at most

ℓ−1
∑
𝑖=1

(⌊ 𝑘
𝑝𝑖 ⌋ + 1)

with the reasoning that we used for Legendre’s theorem in Chapter 2. The only difference
is that this time the sum stops at 𝑖 = ℓ − 1, since the 𝑎𝑗’s contain no ℓ-th powers.
Taking both counts together, we find that the exponent of 𝑝 in 𝑣ℓ is at most

ℓ−1
∑
𝑖=1

(⌊ 𝑘
𝑝𝑖 ⌋ + 1) − ∑

𝑖≥1
⌊ 𝑘

𝑝𝑖 ⌋ ≤ ℓ − 1,

and we have our desired contradiction, since 𝑣ℓ is an ℓ-th power.
This suffices already to settle the case ℓ = 2. Indeed, since 𝑘 ≥ 4, one of the 𝑎𝑖’s must be
equal to 4, but the 𝑎𝑖’s contain no squares. So let us now assume that ℓ ≥ 3.

4. Since 𝑘 ≥ 4, we must have 𝑎𝑖1
= 1, 𝑎𝑖2

= 2, 𝑎𝑖3
= 4 for some 𝑖1, 𝑖2, 𝑖3, that is,

𝑛 − 𝑖1 = 𝑚ℓ
1, 𝑛 − 𝑖2 = 2𝑚ℓ

2, 𝑛 − 𝑖3 = 4𝑚ℓ
3.

We claim that (𝑛−𝑖2)2 ≠ (𝑛−𝑖1)(𝑛−𝑖3). If not, put 𝑏 = 𝑛−𝑖2 and 𝑛−𝑖1 = 𝑏−𝑥, 𝑛−𝑖3 =
𝑏 + 𝑦, where 0 < |𝑥|, |𝑦| < 𝑘. Hence

𝑏2 = (𝑏 − 𝑥)(𝑏 + 𝑦) or (𝑦 − 𝑥)𝑏 = 𝑥𝑦,

where 𝑥 = 𝑦 is plainly impossible. Now we have by part (1)

|𝑥𝑦| = 𝑏|𝑦 − 𝑥| ≥ 𝑏 > 𝑛 − 𝑘 > (𝑘 − 1)2 ≥ |𝑥𝑦|,
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which is absurd.
So we have 𝑚2

2 ≠ 𝑚1𝑚3, where we assume 𝑚2 > 𝑚1𝑚3 (the other case being analogous),
and proceed to our last chain of inequalities. We obtain

2(𝑘 − 1)𝑛 > 𝑛2 − (𝑛 − 𝑘 + 1)2 > (𝑛 − 𝑖2)2 − (𝑛 − 𝑖1)(𝑛 − 𝑖3) (3.4)
= 4[𝑚ℓ

2 − (𝑚1𝑚3)ℓ] ≥ 4[(𝑚1𝑚3 + 1)ℓ − (𝑚1𝑚3)ℓ] (3.5)
≥ 4ℓ𝑚ℓ−1

1 𝑚ℓ−1
3 . (3.6)

Since ℓ ≥ 3 and 𝑛 ≥ 𝑘ℓ ≥ 𝑘3 > 6𝑘, this yields

2(𝑘 − 1)𝑛𝑚1𝑚3 > 4ℓ𝑚ℓ
1𝑚ℓ

3 = ℓ(𝑛 − 𝑖1)(𝑛 − 𝑖3) (3.7)

> ℓ(𝑛 − 𝑘 + 1)2 > 3(𝑛 − 𝑛
6 )2 > 2𝑛2. (3.8)

Now since 𝑚𝑖 ≤ 𝑛1/ℓ ≤ 𝑛1/3 we finally obtain

𝑘𝑛2/3 ≥ 𝑘𝑚1𝑚3 > (𝑘 − 1)𝑚1𝑚3 > 𝑛,

or 𝑘3 > 𝑛. With this contradiction, the proof is complete.
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Chapter 4

Representing numbers as sums of
two squares

Lemma 4.1 (Lemma 1). For primes 𝑝 = 4𝑚+1 the equation 𝑠2 ≡ −1( mod 𝑝) has two solutions
𝑠 ∈ {1, 2, … , 𝑝 − 1}, for 𝑝 = 2 there is one such solution, while for primes of the form 𝑝 = 4𝑚 + 3
there is no solution.

Proof. TODO

Lemma 4.2 (Lemma 2). No number 𝑛 = 4𝑚 + 3 is a sum of two squares.

Proof. TODO

Proposition 4.3 (First proof). Every prime of the form 𝑝 = 4𝑚 + 1 is a sum of two squares,
that is, it can be written as 𝑝 = 𝑥2 + 𝑦2 for some natural numbers 𝑥, 𝑦 ∈ ℕ.

Proof. TODO

Proposition 4.4 (Second proof). Every prime of the form 𝑝 = 4𝑚 + 1 is a sum of two squares,
that is, it can be written as 𝑝 = 𝑥2 + 𝑦2 for some natural numbers 𝑥, 𝑦 ∈ ℕ.

Proof. TODO (Zagier’s one line proof is in mathlib by now, follow this!)

Proposition 4.5 (Third proof). Every prime of the form 𝑝 = 4𝑚 + 1 is a sum of two squares,
that is, it can be written as 𝑝 = 𝑥2 + 𝑦2 for some natural numbers 𝑥, 𝑦 ∈ ℕ.

Proof. TODO

Theorem 4.6. A natural number 𝑛 can be represented as a sum of two squares if and only if every
prime factor of the form 𝑝 = 4𝑚 + 3 appears with an even exponent in the prime decomposition
of 𝑛.

Proof. TODO
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Chapter 5

The law of quadratic reciprocity

Theorem 5.1 (Fermat’s little theorem). For 𝑎 ≢ 0 mod 𝑝,

𝑎𝑝−1 ≡ 1 mod 𝑝
Proof. TODO

Theorem 5.2 (Euler’s criterion). For 𝑎 ≢ 0( mod 𝑝),

(𝑎
𝑝 ) ≡ 𝑎 𝑝−1

2 mod 𝑝

Proof. TODO

Theorem 5.3 (Product Rule).
(𝑎𝑏

𝑝 ) = (𝑎
𝑝 ) ⋅ ( 𝑏

𝑝 )

Proof. TODO

Theorem 5.4 (Lemma of Gauss). TODO

Proof. TODO

Theorem 5.5 (Quadratic reciprocity I). TODO

Proof. TODO

Theorem 5.6. The multiplicative group of a finite field is cyclic

Proof. TODO

Theorem 5.7 (A). TODO

Proof. TODO

Theorem 5.8 (B). TODO

Proof. TODO

Theorem 5.9 (Quadratic reciprocity II). TODO

Proof. TODO
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Chapter 6

Every finite division ring is a field

Theorem 6.1 (Wedderburn’s theorem). Every finite division ring is commutative

Proof. TODO
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Chapter 7

The spectral theorem and
Hadamard’s determinant problem

Lemma 7.1. If 𝐴 is a real symmetric 𝑛 × 𝑛 matrix that is not diagonal, that is Od(𝐴) > 0,
then there exists 𝑈 ∈ 𝑂(𝑛) such that Od(𝑈𝑇 𝐴𝑈) < Od(𝐴).
Proof. TODO

Theorem 7.2. For every real symmetric matrix 𝐴 there is a real orthogonal matrix 𝑄 such that
𝑄𝑇 𝐴𝑄 is diagonal.

Proof. TODO

Theorem 7.3. There exists an 𝑛 × 𝑛 matrix with entries ±1 whose determinant is greater than√
𝑛!.

Proof. TODO
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Chapter 8

Some irrational numbers

Theorem 8.1. 𝑒 is irrational
Proof. TODO

Theorem 8.2. 𝑒2 is irrational
Proof. TODO

Theorem 8.3 (Little Lemma). TODO
Proof. TODO

Theorem 8.4. 𝑒4 is irrational
Proof. TODO

Lemma 8.5. TODO
Proof. TODO

Lemma 8.6. TODO
Proof. TODO

Lemma 8.7. TODO
Proof. TODO

Theorem 8.8. 𝑒𝑟 is irrational for every 𝑟 ∈ ℚ ∖ {0}.
Proof. TODO

Theorem 8.9. 𝜋2 is irrational.
Proof. TODO

Theorem 8.10. For every odd integer 𝑛 ≥ 3, the number

𝐴(𝑛) ∶= 1
𝜋 arccos ( 1√𝑛)

is irrational.
Proof. TODO
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Chapter 9

Four times 𝜋2/6

Theorem 9.1 (Euler’s series: Proof 1).

∑
𝑛≥1

1
𝑛2 = 𝜋2

6

Proof. TODO

Theorem 9.2 (Euler’s series: Proof 2).

∑
𝑘≥0

1
(2 ∗ 𝑘 + 1)2 = 𝜋2

8

Proof. TODO

Theorem 9.3 (Euler’s series: Proof 3).

∑
𝑛≥1

1
𝑛2 = 𝜋2

6

Proof. TODO

Theorem 9.4 (Euler’s series: Proof 4).

∑
𝑛≥1

1
𝑛2 = 𝜋2

6

Proof. TODO

Theorem 9.5 (Four proofs of Euler’s series). Collecting the proofs from the chapter

Proof.
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Chapter 10

Hilbert’s third problem:
decomposing polyhedra

Lemma 10.1 (Pearl Lemma). If 𝑃 and 𝑄 are equidecomposable, then one can place a positive
number of pearls (that is, assign positive integers) to all the segments of the decompositions
𝑃 = 𝑃1 ∪ ⋯ ∪ 𝑃𝑛 and 𝑄 = 𝑄1 ∪ ⋯ ∪ 𝑄𝑛 in such a way that each edge of a piece 𝑃𝑘 receives the
same number of pearls as the corresponding edge of 𝑄𝑘.

Proof. Assign a variable 𝑥𝑖 to each segment in the decomposition of 𝑃 and a variable 𝑦𝑗 to each
segment in the decomposition of 𝑄. Now we have to find positive integer values for the variables
𝑥𝑖 and 𝑦𝑗 in such a way that the 𝑥𝑖-variables corresponding to the segments of any edge of some
𝑃𝑘 yield the same sum as the 𝑦𝑗-variables assigned to the segments of the corresponding edge
of 𝑄𝑘. This yields conditions that require that “some 𝑥𝑖-variables have the same sum as some
𝑦𝑗-values”, namely

∑
𝑖∶𝑠𝑖⊆𝑒

𝑥𝑖 − ∑
𝑗∶𝑠′

𝑗⊆𝑒′
𝑦𝑗 = 0

where the edge 𝑒 ⊆ 𝑃𝑘 decomposes into the segments 𝑠𝑖, while the corresponding edge 𝑒′ ⊆ 𝑄𝑘
decomposes into the segments 𝑠′

𝑗. This is a linear equation with integer coefficients.
We note, however, that positive real values satisfying all these requirements exist, namely the

(real) lengths of the segments! Thus we are done, in view of the following lemma.

Lemma 10.2 (Cone Lemma). If a system of homogeneous linear equations with integer coeffi-
cients has a positive real solution, then it also has a positive integer solution.

Proof. The name of this lemma stems from the interpretation that the set

𝐶 = {𝑥 ∈ ℝ𝑁 ∶ 𝐴𝑥 = 0, 𝑥 > 0}

given by an integer matrix 𝐴 ∈ ℤ𝑀×𝑁 describes a (relatively open) rational cone. We have to
show that if this is nonempty, then it also contains integer points: 𝐶 ∩ ℕ𝑁 ≠ ∅.

If 𝐶 is nonempty, then so is 𝐶 ∶= {𝑥 ∈ ℝ𝑁 ∶ 𝐴𝑥 = 0, 𝑥 ≥ 1}, since for any positive vector a
suitable multiple will have all coordinates equal to or larger than 1. (Here 1 denotes the vector
with all coordinates equal to 1.) It suffices to verify that 𝐶 ⊆ 𝐶 contains a point with rational
coordinates, since then multiplication with a common denominator for all coordinates will yield
an integer point in 𝐶 ⊆ 𝐶.

15



There are many ways to prove this. We follow a well-trodden path that was first explored by
Fourier and Motzkin [8, Lecture 1]: By “Fourier-Motzkin elimination” we show that the lexico-
graphically smallest solution to the system

𝐴𝑥 = 0, 𝑥 ≥ 1

exists, and that it is rational if the matrix 𝐴 is integral.
Indeed, any linear equation 𝑎𝑇 𝑥 = 0 can be equivalently enforced by two inequalities 𝑎𝑇 𝑥 ≥

0, −𝑎𝑇 𝑥 ≥ 0. (Here 𝑎 denotes a column vector and 𝑎𝑇 its transpose.) Thus it suffices to prove
that any system of the type

𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 1
with integral 𝐴 and 𝑏 has a lexicographically smallest solution, which is rational, provided that
the system has any real solution at all.

For this we argue with induction on 𝑁 . The case 𝑁 = 1 is clear. For 𝑁 > 1 look at all the
inequalities that involve 𝑥𝑁 . If 𝑥′ = (𝑥1, … , 𝑥𝑁−1) is fixed, these inequalities give lower bounds
on 𝑥𝑁 (among them 𝑥𝑁 ≥ 1) and possibly also upper bounds. So we form a new system 𝐴′𝑥′ ≥ 𝑏,
𝑥′ ≥ 1 in 𝑁 − 1 variables, which contains all the inequalities from the system 𝐴𝑥 ≥ 𝑏 that do
not involve 𝑥𝑁 , as well as all the inequalities obtained by requiring that all upper bounds on
𝑥𝑁 (if there are any) are larger or equal to all the lower bounds on 𝑥𝑁 (which include 𝑥𝑁 ≥ 1).
This system in 𝑁 − 1 variables has a solution, and thus by induction it has a l exicographically
minimal solution 𝑥′

∗, which is rational. And then the smallest 𝑥𝑁 compatible with this solution
𝑥′

∗ is easily found, it is determined by a linear equation or inequality with integer coefficients,
and thus it is rational as well.

Theorem 10.3 (Bricard’s condition). TODO

Proof. TODO

Theorem 10.4 (Example 1). TODO

Proof. TODO

Theorem 10.5 (Example 2). TODO

Proof. TODO

Theorem 10.6 (Example 3). TODO

Proof. TODO

Theorem 10.7 (Hilbert’s third problem). TODO

Proof.
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Chapter 11

Lines in the plane and
decompositions of graphs

Theorem 11.1. In any configuration of 𝑛 points in the plane, not all on a line, there is a line
which contains exactly two of the points.

Proof. TODO

Theorem 11.2. Let 𝑃 be a set of 𝑛 ≥ 3 points in the plane, not all on a line. Then the set ℒ
of lines passing through at least two points contains at least 𝑛 lines.

Proof. TODO

Theorem 11.3. Let 𝑋 be a set of 𝑛 ≥ 3 elements, and let 𝐴1, … , 𝐴𝑚 be proper subsets of 𝑋,
such that every pair of elements of 𝑋 is contained in precisely one set 𝐴𝑖. Then 𝑚 ≥ 𝑛 holds.

Proof. TODO

Theorem 11.4. If 𝐾𝑛 is decomposed into complete bipartite subgraphs 𝐻1, … , 𝐻𝑚, then 𝑚 ≥
𝑛 − 1.

Proof. TODO
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Chapter 12

The slope problem

Theorem 12.1. If 𝑛 ≥ 3 points in the plane do not lie on one single line, then they determine
at least 𝑛 − 1 different slopes, where equality is possible only if 𝑛 is odd and 𝑛 ≥ 5.

Proof. 1. TODO

2. TODO

3. TODO

4. TODO

5. TODO

6. TODO
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Chapter 13

Three applications of Euler’s
formula

Theorem 13.1 (Euler’s formula). If 𝐺 is a connected plane graph with 𝑛 vertices, 𝑒 edges and
𝑓 faces, then

𝑛 − 𝑒 + 𝑓 = 2.
Proof. TODO

Proposition 13.2. Let 𝐺 be any simple plane graph with 𝑛 > 2 vertices. Then 𝐺 has at most
3 ∗ 𝑛 − 6 edges.

Proof. TODO

Proposition 13.3. Let 𝐺 be any simple plane graph with 𝑛 > 2 vertices. Then 𝐺 has a vertex
of degree at most 5.

Proof. TODO

Proposition 13.4. Let 𝐺 be any simple plane graph with 𝑛 > 2 vertices. If the edges of 𝐺 are
two-colored, then there is a vertex of 𝐺 with at most two color-changes in the cyclic order of the
edges around the vertex.

Proof. TODO

Theorem 13.5 (Sylvester-Gallai). Given any set of 𝑛 ≥ 3 points in the plane, not all on one
line, there is always a line that contains exactly two of the points.

Proof. TODO

Theorem 13.6 (Monochromatic lines). Given any finite configuration of “black” and “white”
points in the plane, not all on one line, there is always a “monochromatic” line: a line that
contains at least two points of one color and none of the other.

Proof. TODO

Lemma 13.7. Every elementary triangle Δ = conv{𝑝0, 𝑝1, 𝑝2} ⊂ ℝ2 has area 𝐴(Δ) = 12
Proof. TODO
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Theorem 13.8 (Pick’s theorem). The area of any (not necessarily convex) polygon 𝑄 ⊂ ℝ2 with
integral vertices is given by

𝐴(𝑄) = 𝑛𝑖𝑛𝑡 + 1
2𝑛𝑏𝑑 − 1

where 𝑛𝑖𝑛𝑡 and 𝑛𝑏𝑑 are the numbers of integral points in the interior respectively on the boundary
of 𝑄.

Proof. TODO
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Chapter 14

Cauchy’s rigidity theorem

Lemma 14.1 (Cauchy’s arm lemma). TODO

Proof. TODO

Theorem 14.2 (Cauchy’s rigidity). If two 3-dimensional convex polyhedra 𝑃 and 𝑃 ′ are combi-
natorially equivalent with corresponding pairs of adjacent congruent, then also the angels between
corresponding pairs of adjacent facets are equal (and thus 𝑃 is congruent to 𝑃 ′).

Proof. TODO
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Chapter 15

The Borromean rings don’t exist

Theorem 15.1. If a link consists of disjoint perfect circles that are pairwise not linked, then the
link is trivial

Proof. TODO

Theorem 15.2. The Borromean rings are nontrivial, and they are also not equivalent to Tait’s
link No. 18

Proof. TODO

Theorem 15.3. The Borromean rings cannot be build from three perfect circles

Proof. TODO
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Chapter 16

Touching simplices

Theorem 16.1. For every 𝑑 ≥ 2, there is a family of 2𝑑 pairwise touching 𝑑-simplices in ℝ𝑑

together with a transversal line that hits the interior of every single on of them.

Proof. TODO

Theorem 16.2. For all 𝑑 ≥ 1, we have 𝑓(𝑑) < 2𝑑+1.

Proof. TODO
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Chapter 17

Every large point set has an
obtuse angle

Theorem 17.1. For every 𝑑, one has the following chain of inequalities:

2𝑑 ≤(1) max {#𝑆 | 𝑆 ⊆ ℝ𝑑, ∠(𝑠𝑖, 𝑠𝑗, 𝑠𝑘) ≤ 𝜋
2 for every {𝑠𝑖, 𝑠𝑗, 𝑠𝑘} ⊆ 𝑆} (17.1)

≤(2) max {#𝑆 | 𝑆 ⊆ ℝ𝑑 such that for any two points {𝑠𝑖, 𝑠𝑗} ⊆ 𝑆,
there is a strip 𝑆(𝑖, 𝑗) that contains 𝑆, with 𝑠𝑖 and 𝑠𝑗 lying in the parallel boundary hyperplanes of 𝑆(𝑖, 𝑗)}

(17.2)
=(3) max {#𝑆 | 𝑆 ⊆ ℝ𝑑 such that the translates 𝑃 − 𝑠𝑖, 𝑠𝑖 ∈ 𝑆, of the convex hull 𝑃 ∶= conv(𝑆)

intersect in a common point, but they only touch} (17.3)
≤(4) max {#𝑆 | 𝑆 ⊆ ℝ𝑑 such that the translates 𝑄 + 𝑠𝑖 of some d-dimensional convex polytope 𝑄 ⊆ ℝ𝑑 touch pairwise}

(17.4)
=(5) max {#𝑆 | 𝑆 ⊆ ℝ𝑑 such that the translates 𝑄∗ + 𝑠𝑖 of some d-dimensional centrally symmetric convex polytope 𝑄∗ ⊆ ℝ𝑑 touch pairwise}

(17.5)
≤(6) 2𝑑. (17.6)

Proof. TODO

Theorem 17.2. For every 𝑑 ≥ 2, there is a set 𝑆 ⊂ {0, 1}𝑑 of 2⌊ 𝑠𝑞𝑟𝑡6
9 ( 2

√(3) )
𝑑⌋ points in ℝ𝑛

(vertices of the unit 𝑑-cube) that determine only acute angels. In particular, in dimension 𝑑 = 34
ther is a set of 72 > 2 ∗ 34 − 1 points with only acute angels.

Proof. TODO
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Chapter 18

Borsuk’s conjecture

Theorem 18.1 (Borsuk’s conjecture). Let 𝑞 = 𝑝𝑚 be a prime power, 𝑛 ∶= 4𝑞 − 2, and 𝑑 ∶=
(𝑛

2) = (2𝑞 − 1)(4𝑞 − 3). Then there is a set 𝑆 ⊆ {+1, −1}𝑑 of 2𝑛−2 points in ℝ𝑑 such that every
partition of 𝑆, whose parts have smaller diameter than 𝑆, has at least

2𝑛−2

∑𝑞−2
𝑖=0 (𝑛−1

𝑖 )

parts. For 𝑞 = 9 this implies that the Borsuk conjecture is false in dimension 𝑑 = 561. Further-
more, 𝑓(𝑑) > (1.2)

√
𝑑 holds for all large enough 𝑑.

Proof. TODO
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Chapter 19

Sets, functions, and the
continuum hypothesis

Theorem 19.1. The set of ℚ of rational numbers is countable.

Proof. TODO

Theorem 19.2. The set ℝ of real numbers is not countable

Proof. TODO

Theorem 19.3. The set ℝ2 of all ordered pairs of real numbers (that is, the real plane) has the
same size as ℝ.

Proof. TODO

Theorem 19.4. If each of two sets 𝑀 and 𝑁 can be mapped injectively into the other, then
there is a bijection from 𝑀 to 𝑁 , that is |𝑀| = |𝑁|.
Proof. TODO

Theorem 19.5. If 𝑐 > ℵ1, then every family {𝑓𝛼} satisfying (𝑃0) is countable. If, on the other
hand, 𝑐 = ℵ1, then there exists some family {𝑓𝛼} with property 𝑃0 which has size 𝑐.

Proof. TODO

Appendix: On cardinal and ordinal numbers
Proposition 19.6. Let 𝜇 be an ordinal number and denote by 𝑊𝜇 the set of ordinal numbers
smaller than 𝜇. Then the following holds:

1. The elements of 𝑊𝜇 are pairwise comparable.

2. If we order 𝑊𝜇 according to their magnitude, then 𝑊𝜇 is well-ordered and has ordinal
number 𝜇.

Proof. TODO
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Proposition 19.7. Any two ordinal numbers 𝜇 and 𝜈 satisfy precisely one of the relations 𝜇 < 𝜈,
𝜇 = 𝜈, or 𝜇 > 𝜈.

Proof. TODO

Proposition 19.8. Every set of ordinal numbers (ordered according to magnitude) is well-
ordered.

Proof. TODO

Proposition 19.9. For every cardinal number 𝔪, there is a definite next larger cardinal number.

Proof. TODO

Proposition 19.10. Let the infinite set 𝑀 have cardinality 𝔪, and let 𝑀 be well ordered
according to the initial ordinal number 𝜔𝔪. Then 𝑀 has no last element.

Proof. Indeed, if 𝑀 had a last element 𝑚, then the segment 𝑀𝑚 would have an ordinal number
𝜇 < 𝜔𝔪 with |𝜇| = 𝔪, contradicting the definition of 𝜔𝔪.

Proposition 19.11. Suppose {𝐴𝛼} is a family of size 𝔪 of countable sets 𝐴𝛼, where 𝔪 is an
infinite cardinal. Then the union ⋃𝛼 𝐴𝛼 has size at most 𝔪.

Proof. TODO
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Chapter 20

In praise of inequalities

Theorem 20.1. Let ⟨𝑎, 𝑏⟩ be an inner product on a real vector space 𝑉 (with the norm |𝑎|2 ∶=
⟨𝑎, 𝑎⟩). Then

⟨𝑎, 𝑏⟩2 ≤ |𝑎|2|𝑏|2

holds for all vectors 𝑎, 𝑏 ∈ 𝑉 , with equality if and only if 𝑎 and 𝑏 are linearly dependent.

Proof. The following (folklore) proof is probably the shortest. Consider the quadratic function

|𝑥𝑎 + 𝑏|2 = 𝑥2|𝑎|2 + 2𝑥⟨𝑎, 𝑏⟩ + |𝑏|2

in the variable 𝑥. We may assume 𝑎 ≠ 0. If 𝑏 = 𝜆𝑎, then clearly

⟨𝑎, 𝑏⟩2 = |𝑎|2|𝑏|2.

If, on the other hand, 𝑎 and 𝑏 are linearly independent, then |𝑥𝑎 + 𝑏|2 > 0 for all 𝑥, and thus the
discriminant ⟨𝑎, 𝑏⟩2 − |𝑎|2|𝑏|2 is less than 0.

Theorem 20.2 (First proof). Let 𝑎1, … 𝑎𝑛 be positive real numbers, then
𝑛

1
𝑎1

+ ⋯ + 1
𝑛𝑛

≤ 𝑛√𝑎1𝑎2 … 𝑎𝑛 ≤ 𝑎1 … 𝑎𝑛
𝑛

with equality in both cases if and only if all 𝑎𝑖’s are equal.

Proof. TODO

Theorem 20.3 (Another Proof). Let 𝑎1, … 𝑎𝑛 be positive real numbers, then
𝑛

1
𝑎1

+ ⋯ + 1
𝑛𝑛

≤ 𝑛√𝑎1𝑎2 … 𝑎𝑛 ≤ 𝑎1 … 𝑎𝑛
𝑛

with equality in both cases if and only if all 𝑎𝑖’s are equal.

Proof. TODO

Theorem 20.4 (Still another Proof). Let 𝑎1, … 𝑎𝑛 be positive real numbers, then
𝑛

1
𝑎1

+ ⋯ + 1
𝑛𝑛

≤ 𝑛√𝑎1𝑎2 … 𝑎𝑛 ≤ 𝑎1 … 𝑎𝑛
𝑛

with equality in both cases if and only if all 𝑎𝑖’s are equal.
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Proof. TODO

Theorem 20.5. Suppose all roots fo the polynomial 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎0 are real. Then the
roots of are contained in the interval with the endpoints

−𝑛𝑛−1
𝑛 ± 𝑛 − 1

𝑛
√𝑎𝑛

𝑛−1 − 2𝑛
𝑛 − 1𝑎𝑛−2.

Proof. TODO

Theorem 20.6. Let 𝑓(𝑥) be a real polynomial of defree 𝑛 ≥ 2 with only real roots, such that
𝑓(𝑥) > 0 for −1 < 𝑥 < 1 amd 𝑓(−1) = 𝑓(1) = 0. Then

2
3𝑇 ≤ 𝐴 ≤ 2

3𝑅,

and equality holds in both cases only for 𝑛 = 2.

Proof. TODO

Theorem 20.7. Suppose 𝐺 is a graph on 𝑛 vertices without triangles. Then 𝐺 has at most 𝑛2
4

edges, and equality holds only when 𝑛 is even and 𝐺 is the complete bipartite graph 𝐾𝑛/2,𝑛/2.

Proof. TODO

Theorem 20.8. Suppose 𝐺 is a graph on 𝑛 vertices without triangles. Then 𝐺 has at most 𝑛2
4

edges, and equality holds only when 𝑛 is even and 𝐺 is the complete bipartite graph 𝐾𝑛/2,𝑛/2.

Proof. TODO
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Chapter 21

The fundamental theorem of
algebra

Lemma 21.1. Let 𝑝(𝑧) = ∑𝑛
𝑘=0 𝑐𝑘𝑧𝑘 be a complex polynomial of degree 𝑛 ≥ 1. If 𝑝(𝑎) ≠ 0, then

every disk 𝐷 around 𝑎 contains an interior point 𝑏 with |𝑝(𝑏)| < |𝑝(𝑎)|
Proof. TODO

Theorem 21.2. Every nonconstant polynomial with complex coefficients has at least one root
in the field of complex numbers.

Proof. The rest is easy. Clearly, 𝑝(𝑧)𝑧−𝑛 approaches the leading coefficient 𝑐𝑛 of 𝑝(𝑧) as |𝑧| goes
to infinity. Hence |𝑝(𝑧)| goes to infinity as well with |𝑧| → ∞. Consequently, there exists 𝑅1 > 0
such that |𝑝(𝑧)| > |𝑝(0)| for all points 𝑧 on the circle {𝑧 ∶ |𝑧| = 𝑅1}. Furthermore, our third fact
(C) tells us that in the compact set 𝐷1 = {𝑧 ∶ |𝑧| ≤ 𝑅1} the continuous real-valued function |𝑝(𝑧)|
attains the minimum value at some point 𝑧0. Because of |𝑝(𝑧)| > |𝑝(0)| for 𝑧 on the boundary
of 𝐷1, 𝑧0 must lie in the interior. But by d’Alembert’s lemma 21.1 this minimum value |𝑝(𝑧0)|
must be 0 — and this is the whole proof.
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Chapter 22

One square and an odd number of
triangles

Definition 22.1 (valutaion on ℝ).

Definition 22.2 (Three-coloring of plane). TODO

Definition 22.3 (Rainbow triangle). TODO

Lemma 22.4. For any blue point 𝑝0 = (𝑥𝑏, 𝑦𝑏), green point (𝑥𝑔, 𝑦𝑔), and red point (𝑥𝑟, 𝑦𝑟), the
𝑣-value of the determinant

det ⎡⎢
⎣

𝑥𝑏 𝑦𝑏 1
𝑥𝑔 𝑦𝑔 1
𝑥𝑟 𝑦𝑟 1

⎤⎥
⎦

is at least 1.

Proof. TODO

Corollary 22.5. Any line of the plane receives at most two different colors. The area of a
rainbow triangle cannot be 0, and it cannot be 1

𝑛 for odd 𝑛.

Proof. Follow from 22.4

Lemma 22.6. Every dissection of the unit square 𝑆 = [0, 1]2 into finitely many triangles contains
an odd number of rainbow triangles, and thus at least one.

Proof. TODO

Theorem 22.7 (Monsky’s theorem). It is not possible to dissect a square into an odd number
of triangles of equal algebra area.

Proof. TODO
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Appendix: Extending valuations
Lemma 22.8. A proper subring 𝑅 ⊂ 𝐾 is a valuation ring with respect to some valuation 𝑣 into
some ordered group 𝐺 if and only if 𝐾 = 𝑅 ∪ 𝑅−1.

Proof. TODO

Theorem 22.9. The field of real numbers ℝ has a non-Archimedean valuation to an ordered
abelian group

𝑣 ∶ ℝ → {0} ∪ 𝐺
such that 𝑣( 1

2 ) > 1.

Proof. TODO

32



Chapter 23

A theorem of Pólya on
polynomials

Theorem 23.1. Let 𝑓(𝑧) be a complex polynomial of degree at least 1 and leading coefficient 1.
Set 𝐶 = {𝑧 ∈ ℂ ∶ |𝑓(𝑧)| ≤ 2} and let ℛ be the orthogonal projection of 𝐶 onto the real axis. Then
there are intervals 𝐼1, … , 𝐼𝑡 on the real line which together cover ℛ and satisfy

ℓ(𝐼1) + ⋯ + ℓ(𝐼𝑡) ≤ 4.
Proof.

Theorem 23.2. Let 𝑝(𝑥) be a real polynomial of degree 𝑛 ≥ 1 with leading coefficient 1, and all
roots real. Then the set 𝒫 = {𝑥 ∈ ℝ ∶ |𝑝(𝑥)| ≤ 2} can be covered by intervals of total length at
most 4.
Proof.

Corollary 23.3. Let 𝑝(𝑥) be a real polynomial of degree 𝑛 ≥ 1 with leading coefficient 1, and
suppose that |𝑝(𝑥)| ≤ 2 for all 𝑥 in the interval [𝑎, 𝑏]. Then 𝑏 − 𝑎 ≤ 4.
Proof. TODO

23.1 Appendix: Chebyshev’s theorem
Theorem 23.4 (Chebyshev’s theorem). Let 𝑝(𝑥) be a real polynomial of degree 𝑛 ≥ 1 with
leading coefficient 1. Then

max
−1≤𝑥≤1

|𝑝(𝑥)| ≥ 1
2𝑛−1 .

Proof. TODO

Theorem 23.5 (Fact 1). If 𝑏 is a multiple root of 𝑝′(𝑥), then 𝑏 is also a root of 𝑝(𝑥).
Proof. Let 𝑏1 < ⋯ < 𝑏𝑟 be the roots of 𝑝(𝑥) with multiplicities 𝑠1, … , 𝑠𝑟, ∑𝑟

𝑗=1 𝑠𝑗 = 𝑛. From
𝑝(𝑥) = (𝑥 − 𝑏𝑗)𝑠𝑗ℎ(𝑥) we infer that 𝑏𝑗 is a root of 𝑝′(𝑥) if 𝑠𝑗 ≥ 2, and the multiplicity of 𝑏𝑗 in
𝑝′(𝑥) is 𝑠𝑗 − 1. Furthermore, there is a root of 𝑝′(𝑥) between 𝑏1 and 𝑏2, another root between
𝑏2 and 𝑏3, …, and one between 𝑏𝑟−1 and 𝑏𝑟, and all these roots must be single roots, since
∑𝑟

𝑗=1(𝑠𝑗 − 1) + (𝑟 − 1) counts already up to the degree 𝑛 − 1 of 𝑝′(𝑥). Consequently, the multiple
roots of 𝑝′(𝑥) can only occur among the roots of 𝑝(𝑥).
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Theorem 23.6 (Fact 2). We have 𝑝′(𝑥)2 ≥ 𝑝(𝑥)𝑝″(𝑥) for all 𝑥 ∈ ℝ.

Proof. If 𝑥 = 𝑎𝑖 is a root of 𝑝(𝑥), then there is nothing to show. Assume then 𝑥 is not a root.
The product rule of differentiation yields

𝑝′(𝑥) =
𝑛

∑
𝑘=1

𝑝(𝑥)
𝑥 − 𝑎𝑘

, that is, 𝑝′(𝑥)
𝑝(𝑥) =

𝑛
∑
𝑘=1

1
𝑥 − 𝑎𝑘

.

Differentiating this again we have

𝑝″(𝑥)𝑝(𝑥) − 𝑝′(𝑥)2

𝑝(𝑥)2 = −
𝑛

∑
𝑘=1

1
(𝑥 − 𝑎𝑘)2 < 0.
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Chapter 24

Van der Waerden’s permanent
conjecture

Theorem 24.1. Let 𝑀 = (𝑚𝑖𝑗) be a doubly stochastic 𝑛 × 𝑛 matrix. Then

per 𝑀 ≥ 𝑛!
𝑛𝑛

and equality holds if and only if 𝑚𝑖𝑗 = 1
𝑛

Proof. TODO

Proposition 24.2 (Gurvit’s proposition). If 𝑝(𝑥) ∈ ℝ+[𝑥1, … , 𝑥𝑛] is a 𝐻-stable and homoge-
neous of degree 𝑛, then either 𝑝′ ≅ 0, or 𝑝′ is 𝐻-stable and homogeneous of degree 𝑛 − 1. In
either case

cap(𝑝′) ≥ cap ⋅𝑔(deg𝑛 𝑝).
Proof. TODO
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Chapter 25

On a lemma of Littlewook and
Offord

Theorem 25.1. Let 𝑎1, … , 𝑎𝑛 be vectors in ℝ𝑑, each of length at least 1, and let 𝑅1, … , 𝑅𝑘 be
𝑘 open regions of ℝ𝑑, where |𝑥 − 𝑦| < 2 for any 𝑥, 𝑦 that lie in the same region 𝑅𝑖. Then the
number of linear combinations ∑𝑛

𝑖=1 𝜖𝑖𝑎𝑖, 𝜖𝑖 ∈ {1, −1}, that can lie in the union ⋃𝑖 𝑅𝑖 of the
regions is at most the sum of the 𝑘 largest binomial coefficients (𝑛

𝑗).
In particular, we get the bound (⌊𝑛/2⌋

𝑛 ) for 𝑘 = 1.

Proof. TODO
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Chapter 26

Cotangent and the Herglotz trick

Lemma 26.1 (A). The functions 𝑓 and 𝑔 are defined for all non-integral values and are con-
tinuous there.

Proof. TODO

Lemma 26.2 (B). Both 𝑓 and 𝑔 are periodic of period 1, that is 𝑓(𝑥 + 1) = 𝑓(𝑥) and 𝑔(𝑥 + 1) =
𝑔(𝑥) hold for all 𝑥 ∈ ℝ ∖ ℤ.

Proof. TODO

Lemma 26.3 (C). Both 𝑓 and 𝑔 are odd functions, that is we have 𝑓(−𝑥) = −𝑓(𝑥) and
𝑔(−𝑥) = −𝑔(𝑥) for all 𝑥 ∈ ℝ ∖ ℤ.

Proof. TODO

Lemma 26.4 (D). The two functions 𝑓 and 𝑔 sarisfy the same functional equation: 𝑓( 𝑥
2 ) +

𝑓( 𝑥+1
2 ) = 2𝑓(𝑥) and 𝑔( 𝑥

2 ) + 𝑔( 𝑥+1
2 ) = 𝑔𝑓(𝑥).

Proof. TODO

Lemma 26.5 (E). By setting ℎ(𝑥) ∶= 0 for 𝑥 ∈ ℤ, ℎ becomes a continuous function on all of ℝ
that shares the properties given in 26.2, 26.3, 26.4.

Proof. TODO

Theorem 26.6.
𝜋 cot 𝜋𝑥 = 1

𝑥 +
∞

∑
𝑛=1

( 1
𝑥 + 𝑛 + 1

𝑥 − 𝑛)

for 𝑥 ∈ ℝ ∖ ℤ.

Proof.
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Chapter 27

Buffon’s needle problem

Theorem 27.1 (Buffon’s needle problem). If a short needle, of length ℓ, is dropped on paper
that is ruled with equally spaced lines of distance 𝑑 ≥ ℓ, then the probability that the needle comes
to lie in a position where it crosses one of the lines is exactly

𝑝 = 2ℓ
𝜋𝑑 .

Proof. TODO
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Chapter 28

Pigeon-hole and double counting

Theorem 28.1 (Pigeon-hole princinple). If 𝑛 objects are placed in 𝑟 boxes, where 𝑟 < 𝑛, then
at least one of the boxes contains more than one object.

Proof. obvious

Theorem 28.2 (Double counting). Suppose that we are given two finite sets 𝑅 and 𝐶 and a
subset 𝑆 ⊆ 𝑅 × 𝐶. Whenever (𝑝, 𝑞) ∈ 𝑆, then we say 𝑝 and 𝑞 are incident. If 𝑟𝑝 denotes the
number of elements that are incident to 𝑝 ∈ 𝑅, and 𝑐𝑞 denotes the number of elements that are
incident to 𝑞 ∈ 𝐶, then

∑
𝑝∈𝑅

𝑟𝑝 = |𝑆| = ∑
𝑞∈𝐶

𝑐𝑞. (3)

Proof. “nothing to prove”

28.1 Numbers
Theorem 28.3 (Claim). Consider the numbers 1, 2, 3, … 2𝑛, and take away 𝑛+1 of them. Then
there are two among these 𝑛 + 1 numbers which are relatively prime.

Proof. obvious

Theorem 28.4 (Claim). Suppose again 𝐴 ⊂ {1, 2, … , 2𝑛} with |𝐴| = 𝑛 + 1. Then there are
always two numbers in 𝐴 such that one divides the other.

Proof. Write every number 𝑎 ∈ 𝐴 in the form 𝑎 = 2𝑘𝑚, where 𝑚 is an odd number between 1
and 2𝑛 − 1. Since there are 𝑛 + 1 numbers in 𝐴, but only 𝑛 different odd parts, there must be
two numbers in 𝐴 with the same odd part. Hence one is a multiple of the other.

28.2 Sequences
Theorem 28.5 (Claim). In any sequence 𝑎1, 𝑎2, … , 𝑎𝑚𝑛+1 of 𝑚𝑛+1 distinct real numbers, there
exists an increasing subsequence

𝑎𝑖1
< 𝑎𝑖2

< ⋯ < 𝑎𝑖𝑚+1
(𝑖1 < 𝑖2 < ⋯ < 𝑖𝑚+1)
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of length 𝑚 + 1, or a decreasing subsequence

𝑎𝑗1
> 𝑎𝑗2

> ⋯ > 𝑎𝑗𝑛+1
(𝑗1 < 𝑗2 < ⋯ < 𝑗𝑛+1)

of length 𝑛 + 1, or both.

Proof. This time the application of the pigeon-hole principle is not immediate. Associate to
each 𝑎𝑖 the number 𝑡𝑖, which is the length of a longest increasing subsequence starting at 𝑎𝑖. If
𝑡𝑖 ≥ 𝑚 + 1 for some 𝑖, then we have an increasing subsequence of length 𝑚 + 1. Suppose then
that 𝑡𝑖 ≤ 𝑚 for all 𝑖. The function 𝑓 ∶ 𝑎𝑖 ↦ 𝑡𝑖 mapping {𝑎1, … , 𝑎𝑚𝑛+1} to {1, … , 𝑚} tells us
by (1) that there is some 𝑠 ∈ {1, … , 𝑚} such that 𝑓(𝑎𝑖) = 𝑠 for 𝑚𝑛

𝑚 + 1 = 𝑛 + 1 numbers 𝑎𝑖.
Let 𝑎𝑗1

, 𝑎𝑗2
, … , 𝑎𝑗𝑛+1

(𝑗1 < ⋯ < 𝑗𝑛+1) be these numbers. Now look at two consecutive numbers
𝑎𝑗𝑖

< 𝑎𝑗𝑖+1
, then we would obtain an increasing subsequence of length 𝑠 starting at 𝑎𝑗𝑖+1

, and
consequently an increasing subsequence of length 𝑠 + 1 starting at 𝑎𝑗𝑖

, which cannot be since
𝑓(𝑎𝑗𝑖

) = 𝑠. We thus obtain a decreasing subsequence 𝑎𝑗1
> 𝑎𝑗2

> ⋯ > 𝑎𝑗𝑛+1
of length 𝑛 + 1.

28.3 Sums
Theorem 28.6 (Claim). Suppose we are given 𝑛 integers 𝑎1, … , 𝑎𝑛, which need not be distinct.
Then there is always a set of consecutive numbers 𝑎𝑘+1, 𝑎𝑘+2, … , 𝑎ℓ whose sum ∑ℓ

𝑖=𝑘+1 𝑎𝑖 is a
multiple of 𝑛.

Proof. For the proof we set 𝑁 = {0, 1, … , 𝑛} and 𝑅 = {0, 1, … , 𝑛−1}. Consider the map 𝑓 ∶ 𝑁 →
𝑅, where 𝑓(𝑚) is the remainder of 𝑎1 +⋯+𝑎𝑚 upon division by 𝑛. Since |𝑁| = 𝑛+1 > 𝑛 = |𝑅|,
it follows that there are two sums 𝑎1 + ⋯ + 𝑎𝑘, 𝑎1 + ⋯ + 𝑎ℓ (𝑘 < ℓ) with the same remainder,
where the first sum may be the empty sum denoted by 0. It follows that

ℓ
∑

𝑖=𝑘+1
𝑎𝑖 =

ℓ
∑
𝑖=1

𝑎𝑖 −
𝑘

∑
𝑖=1

𝑎𝑖

has remainder 0 — end of proof.

28.4 Numbers again
TODO

28.5 Graphs
Theorem 28.7. If the graph 𝐺 on 𝑛 vertices contains no 4-cycles, then

|𝐸| ≤ ⌊𝑛
4 (1 +

√
4𝑛 − 3)⌋

Proof. TODO

28.6 Sperner’s Lemma
Lemma 28.8 (Sperner’s Lemma). Suppose that some “big” triangle with vertices 𝑉1, 𝑉2, 𝑉3 is
triangulated (that is, decomposed into a finite number of “small” triangles that fit together edge-
by-edge). Assume that the vertices in the triangulation get “colors” from the set {1, 2, 3} such
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that 𝑉𝑖 receives the color 𝑖 (for each 𝑖), and only the colors 𝑖 and 𝑗 are used for vertices along
the edge from 𝑉𝑖 to 𝑉𝑗 (for 𝑖 ≠ 𝑗), while the interior vertices are colored arbitrarily with 1, 2,
or 3. Then in the triangulation there must be a small “tricolored” triangle, which has all three
different vertex colors.

Proof. We will prove a stronger statement: The number of tricolored triangles is not only nonzero,
it is always odd.

Consider the dual graph to the triangulation, but don’t take all its edges — only those which
cross an edge that has endvertices with the (different) colors 1 and 2. Thus we get a “partial
dual graph” which has degree 1 at all vertices that correspond to tricolored triangles, degree 2
for all triangles in which the two colors 1 and 2 appear, and degree 0 for triangles that do not
have both colors 1 and 2. Thus only the tricolored triangles correspond to vertices of odd degree
(of degree 1).

However, the vertex of the dual graph which corresponds to the outside of the triangulation
has odd degree: in fact, along the big edge from 𝑉1 to 𝑉2, there is an odd number of changes
between 1 and 2. Thus an odd number of edges of the partial dual graph crosses this big edge,
while the other big edges cannot have both 1 and 2 occurring as colors.

Now since the number of odd-degree vertices in any finite graph is even (by equation (4)), we
find that the number of small triangles with three different colors (corresponding to odd inside
vertices of our dual graph) is odd.

Theorem 28.9 (Brower’s Fixpoint (for 𝑛 = 2)). Every continuous function 𝑓 ∶ 𝐵2 ⟶ 𝐵2 of an
2-dimensional ball to itself has a fixed point (a point 𝑥 ∈ 𝐵2 with 𝑓(𝑥) = 𝑥).

Proof. TODO

41



Chapter 29

Tiling rectangles

Theorem 29.1 (First proof). Whenever a rectangle is tiled by rectangles all of which have at
least one side of integer length, then the tiled rectangle has at least one side of integer length.

Proof. TODO

Theorem 29.2 (Second proof). Whenever a rectangle is tiled by rectangles all of which have at
least one side of integer length, then the tiled rectangle has at least one side of integer length.

Proof. TODO

Theorem 29.3 (Third proof). Whenever a rectangle is tiled by rectangles all of which have at
least one side of integer length, then the tiled rectangle has at least one side of integer length.

Proof. TODO
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Chapter 30

Three famous theorems on finite
sets

Theorem 30.1. The size of a largest antichain of an 𝑛-set is ( 𝑛
⌊𝑛/2⌋).

Proof. TODO

Lemma 30.2. Let 𝑛 ≥ 2𝑘, and suppose we are given 𝑡 distinct arcs 𝐴1, … 𝐴𝑡 of length 𝑘, such
that any two arcs have an edge in common. Then 𝑡 ≤ 𝑘.

Proof. TODO

Theorem 30.3. The largest size of an intersection 𝑘-family in an 𝑛-set is (𝑛−1
𝑘−1).

Proof. TODO

Theorem 30.4 (Marriage theorem). Let 𝐴1, … 𝐴𝑛 be a collection of subset of a finite set 𝑋.
Then there exists a system of distinct representatives if and only if the union of any 𝑚 sets 𝐴𝑖
contains at least 𝑚 elements, for 1 ≤ 𝑚 ≤ 𝑛.

Proof. TODO
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Chapter 31

Shuffling cards

Lemma 31.1. Let ℚ ∶ 𝔖𝑛 ⟶ ℝ be any probability distribution that defines a shuffling process
ℚ∗𝑘 with a strong uniform stopping rule whose stopping time is 𝑇 . Then for all 𝑘 ≥ 0,

||ℚ∗𝑘 − 𝕌|| ≤ Prob[𝑇 > 𝑘].

Proof. If 𝑋 is a random variable with values in 𝔖𝑛, with probability distribution ℚ, then we
write ℚ(𝑆) for the probability that 𝑋 takes a value in 𝑆 ⊆ 𝔖𝑛. Thus ℚ(𝑆) = Prob[𝑋 ∈ 𝑆], and
in the case of the uniform distribution ℚ = 𝕌 we get

𝕌(𝑆) = Prob[𝑋 ∈ 𝑆] = |𝑆|
𝑛! .

For every subset 𝑆 ⊆ 𝔖𝑛, we get the probability that after 𝑘 steps our deck is ordered
according to a permutation in 𝑆 as

ℚ∗𝑘(𝑆) = Prob[𝑋𝑘 ∈ 𝑆] = ∑
𝑗≤𝑘

Prob[𝑋𝑘 ∈ 𝑆 ∧ 𝑇 = 𝑗] + Prob[𝑋𝑘 ∈ 𝑆 ∧ 𝑇 > 𝑘]

= ∑
𝑗≤𝑘

𝕌(𝑆) ⋅ Prob[𝑇 = 𝑗] + Prob[𝑋𝑘 ∈ 𝑆|𝑇 > 𝑘] ⋅ Prob[𝑇 > 𝑘]

= 𝕌(𝑆)(1 − Prob[𝑇 > 𝑘]) + Prob[𝑋𝑘 ∈ 𝑆|𝑇 > 𝑘] ⋅ Prob[𝑇 > 𝑘]
= 𝕌(𝑆) + (Prob[𝑋𝑘 ∈ 𝑆|𝑇 > 𝑘] − 𝕌(𝑆)) ⋅ Prob[𝑇 > 𝑘].

This yields
|ℚ∗𝑘(𝑆) − 𝕌(𝑆)| ≤ Prob[𝑇 > 𝑘]

since
Prob[𝑋𝑘 ∈ 𝑆|𝑇 > 𝑘] − 𝕌(𝑆)

is a difference of two probabilities, so it has absolute value at most 1.

Theorem 31.2. Let 𝑐 ≥ 0 and 𝑘 ∶= ⌈𝑛 log 𝑛 + 𝑐𝑛⌉. Then after performing 𝑘 top-in-at-random
shuffles on a deck of 𝑛 cards, the variation distance from the uniform distribution satisfies

𝑑(𝑘) ∶= ||Top∗𝑘 − 𝕌|| ≤ 𝑒−𝑐.

Proof. TODO
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Theorem 31.3. After performing 𝑘 riffle shuffles on a deck of 𝑛 cards, the variation distance
from a uniform distribution satisfies

||Rif∗𝑘 − 𝕌|| ≤ 1 −
𝑛−1
∏
𝑖=1

(1 − 𝑖
2𝑘 ) .

Proof. TODO

45



Chapter 32

Lattice paths and determinants

Lemma 32.1. Let 𝐺 = (𝑉 , 𝐸) be a finite weighted acyclic directed graph, 𝐴 = {𝐴1, … , 𝐴𝑛} and
ℬ = {𝐵1, … , 𝐵𝑛} two 𝑛-sets of vertices, and 𝑀 the path matrix from 𝐴 to ℬ. Then

det 𝑀 = ∑
𝒫 vertex-disjoint path system

sign(𝒫) 𝑤(𝒫). (3)

Proof. TOOD

Theorem 32.2. Let 𝐺 = (𝑉 , 𝐸) be a finite weighted acyclic directed graph, 𝐴 = {𝐴1, … , 𝐴𝑛}
and ℬ = {𝐵1, … , 𝐵𝑛} two 𝑛-sets of vertices, and 𝑀 the path matrix from 𝐴 to ℬ. Then

det 𝑀 = ∑
𝒫 vertex-disjoint path system

sign(𝒫) 𝑤(𝒫). (3)

Proof. TODO
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Chapter 33

Cayley’s formula for the number
of trees

Theorem 33.1 (First proof (bijection)). There are 𝑛𝑛−2 different labeled trees on 𝑛 nodes.

Proof. TODO

Theorem 33.2 (Second proof (Linear Algebra)). There are 𝑛𝑛−2 different labeled trees on 𝑛
nodes.

Proof. TODO

Theorem 33.3 (Second proof (Recursion)). There are 𝑛𝑛−2 different labeled trees on 𝑛 nodes.

Proof. TODO

Theorem 33.4 (Second proof (Double Counting)). There are 𝑛𝑛−2 different labeled trees on 𝑛
nodes.

Proof. TODO
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Chapter 34

Identities versus bijections

Theorem 34.1.
∏
𝑘≥1

(1 − 𝑥𝑘) = 1 + ∑
𝑗≥1

(−1)𝑗(𝑥 3𝑗2−𝑗
2 + 𝑥3𝑗2+𝑗2).

Proof. TODO

48



Chapter 35

The finite Kakeya problem

Let 𝐹 be a finite field.

Lemma 35.1. Every nonzero polynomial 𝑝(𝑥) ∈ 𝐹 [𝑥1, … , 𝑥𝑛] of degree 𝑑 has at most 𝑑𝑞𝑛−1

roots in 𝐹 𝑛.

Proof. We use induction on 𝑛, with fact (1) above as the starting case 𝑛 = 1. Let us split 𝑝(𝑥)
into summands according to the powers of 𝑥𝑛,

𝑝(𝑥) = 𝑔0 + 𝑔1𝑥𝑛 + 𝑔2𝑥2
𝑛 + ⋯ + 𝑔ℓ𝑥ℓ

𝑛,
where 𝑔𝑖 ∈ 𝐹[𝑥1, … , 𝑥𝑛−1] for 0 ≤ 𝑖 ≤ ℓ ≤ 𝑑, and 𝑔ℓ is nonzero. We write every 𝑣 ∈ 𝐹 𝑛 in the
form 𝑣 = (𝑎, 𝑏) with 𝑎 ∈ 𝐹 𝑛−1, 𝑏 ∈ 𝐹 , and estimate the number of roots 𝑝(𝑎, 𝑏) = 0.

Case 1. Roots (𝑎, 𝑏) with 𝑔ℓ(𝑎) = 0. Since 𝑔ℓ ≠ 0 and deg 𝑔ℓ ≤ 𝑑 − ℓ, by induction the
polynomial 𝑔ℓ has at most (𝑑 − ℓ)𝑞𝑛−2 roots in 𝐹 𝑛−1, and for each 𝑎 there are at most 𝑞 different
choices for 𝑏, which gives at most (𝑑 − ℓ)𝑞𝑛−1 such roots for 𝑝(𝑥) in 𝐹 𝑛.

Case 2. Roots (𝑎, 𝑏) with 𝑔ℓ(𝑎) ≠ 0. Here 𝑝(𝑎, 𝑥𝑛) ∈ 𝐹 [𝑥𝑛] is not the zero polynomial in the
single variable 𝑥𝑛, it has degree ℓ, and hence for each 𝑎 by (1) there are at most ℓ elements 𝑏
with 𝑝(𝑎, 𝑏) = 0. Since the number of 𝑎’s is at most 𝑞𝑛−1 we get at most ℓ𝑞𝑛−1 roots for 𝑝(𝑥) in
this way.

Summing the two cases gives at most

(𝑑 − ℓ)𝑞𝑛−1 + ℓ𝑞𝑛−1 = 𝑑𝑞𝑛−1

roots for 𝑝(𝑥), as asserted.

Lemma 35.2. For every set 𝐸 ⊆ 𝐹 𝑛 of size |𝐸| < (𝑛+𝑑
𝑑 ) there is a nonzero polynomial 𝑝(𝑥) ∈

𝐹 [𝑥1, … , 𝑥𝑛] of degree at most 𝑑 that vanishes on 𝐸.

Proof. Consider the vector space 𝑉𝑑 of all polynomials in 𝐹[𝑥1, … , 𝑥𝑛] of degree at most 𝑑. A
basis for 𝑉𝑑 is provided by the monomials 𝑥𝑠1

1 … 𝑥𝑠𝑛𝑛 with ∑ 𝑠𝑖 ≤ 𝑑:

1, 𝑥1, … , 𝑥𝑛, 𝑥2
1, 𝑥1𝑥2, … , 𝑥3

1, … , 𝑥𝑑
𝑛.

The following pleasing argument shows that the number of monomials 𝑥𝑠1
1 … 𝑥𝑠𝑛𝑛 of degree at

most 𝑑 equals the binomial coefficient (𝑛+𝑑
𝑑 ). What we want to count is the number of 𝑛-tuples

(𝑠1, … , 𝑠𝑛) of nonnegative integers with 𝑠1 + ⋯ + 𝑠𝑛 ≤ 𝑑. To do this, we map every 𝑛-tuple
(𝑠1, … , 𝑠𝑛) to the increasing sequence

𝑠1 + 1 < 𝑠1 + 𝑠2 + 2 < ⋯ < 𝑠1 + ⋯ + 𝑠𝑛 + 𝑛,
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which determines an 𝑛-subset of {1, 2, … , 𝑑 + 𝑛}. The map is bijective, so the number of mono-
mials is (𝑛+𝑑

𝑑 ).
Next look at the vector space 𝐹 𝐸 of all functions 𝑓 ∶ 𝐸 → 𝐹 ; it has dimension |𝐸|, which by

assumption is less than (𝑛+𝑑
𝑑 ) = dim 𝑉𝑑. The evaluation map 𝑝(𝑥) ↦ (𝑝(𝑎))𝑎∈𝐸 from 𝑉𝑑 to 𝐹 𝐸 is

a linear map of vector spaces. We conclude that it has a nonzero kernel, containing as desired a
nonzero polynomial that vanishes on 𝐸.

Theorem 35.3 (finite Kakeya problem). Let 𝐾 ⊆ 𝐹 𝑛 be a Kakeya set. Then

|𝐾| ≥ (|𝐹 | + 𝑛 − 1
𝑛 ) ≥ |𝐹 |𝑛

𝑛! .

Proof. The second inequality is clear from the definition of binomial coefficients. For the first,
set again 𝑞 = |𝐹 | and suppose for a contradiction that

|𝐾| < (𝑞 + 𝑛 − 1
𝑛 ) = (𝑛 + 𝑞 − 1

𝑞 − 1 ).

By Lemma 35.2 there exists a nonzero polynomial 𝑝(𝑥) ∈ 𝐹 [𝑥1, … , 𝑥𝑛] of degree 𝑑 ≤ 𝑞 − 1 that
vanishes on 𝐾. Let us write

𝑝(𝑥) = 𝑝0(𝑥) + 𝑝1(𝑥) + ⋯ + 𝑝𝑑(𝑥), (1)

where 𝑝𝑖(𝑥) is the sum of the monomials of degree 𝑖; in particular, 𝑝𝑑(𝑥) is nonzero. Since 𝑝(𝑥)
vanishes on the nonempty set 𝐾, we have 𝑑 > 0. Take any 𝑣 ∈ 𝐹 𝑛 ∖{0}. By the Kakeya property
for this 𝑣 there exists a 𝑤 ∈ 𝐹 𝑛 such that

𝑝(𝑤 + 𝑡𝑣) = 0 for all 𝑡 ∈ 𝐹 .

Here comes the trick: Consider 𝑝(𝑤 + 𝑡𝑣) as a polynomial in the single variable 𝑡. It has degree
at most 𝑑 ≤ 𝑞 − 1 but vanishes on all 𝑞 points of 𝐹 , whence 𝑝(𝑤 + 𝑡𝑣) is the zero polynomial in 𝑡.
Looking at (1) above we see that the coefficient of 𝑡𝑑 in 𝑝(𝑤 + 𝑡𝑣) is precisely 𝑝𝑑(𝑣), which must
therefore be 0. But 𝑣 ∈ 𝐹 𝑛 ∖ {0} was arbitrary and 𝑝𝑑(0) = 0 since 𝑑 > 0, and we conclude that
𝑝𝑑(𝑥) vanishes on all of 𝐹 𝑛. Since

𝑑𝑞𝑛−1 ≤ (𝑞 − 1)𝑞𝑛−1 < 𝑞𝑛,

Lemma 35.1, however, tells us that 𝑝𝑑(𝑥) must then be the zero polynomial — contradiction and
end of the proof.
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Chapter 36

Completing Latin squares

Lemma 36.1. Any (𝑟 × 𝑛)-Latin rectangle, 𝑟 < 𝑛, can be extended to an ((𝑟 + 1) × 𝑛)-Latin
rectangle and hence can be completed to a Latin square.

Proof. We apply Hall’s theorem 30.4 (see Chapter 30). Let 𝐴𝑗 be the set of numbers that do
not appear in column 𝑗. An admissible (𝑟 + 1)-st row corresponds then precisely to a system of
distinct representatives for the collection 𝐴1, … , 𝐴𝑛. To prove the lemma we therefore have to
verify Hall’s condition (H). Every set 𝐴𝑗 has size 𝑛−𝑟, and every element is in precisely 𝑛−𝑟 sets
𝐴𝑗 (since it appears 𝑟 times in the rectangle). Any 𝑚 of the sets 𝐴𝑗 contain together 𝑚(𝑛 − 𝑟)
elements and therefore at least 𝑚 different ones, which is just condition (H).

Lemma 36.2. Let 𝑃 be a partial Latin square of order 𝑛 with at most 𝑛 − 1 cells filled and at
most 𝑛

2 distinct elements, then 𝑃 can be completed to a Latin square of order 𝑛.

Proof. TODO

Theorem 36.3 (Smetaniuk’s theorem). Any partial Latin square of order 𝑛 with at most 𝑛 − 1
filled cells can be completed to a Latin square of the same order.

Proof.
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Chapter 37

Permanents and the power of
entropy

Theorem 37.1. Let 𝑀 = (𝑚𝑖𝑗) be an 𝑛 × 𝑛 matrix with entries in {0, 1}, and let 𝑑1, … , 𝑑𝑛 be
the row sums of 𝑀 , that is, 𝑑𝑖 = ∑𝑛

𝑗=1 𝑚𝑖𝑗. Then

per 𝑀 ≤
𝑛

∏
𝑖=1

(𝑑𝑖!)1/𝑑𝑖 .

Proof. TODO

Theorem 37.2. The number 𝐿(𝑛) of Latin squares of order 𝑛 is bounded by

𝑛!2𝑛

𝑛𝑛2 ≤ 𝐿(𝑛) ≤
𝑛

∏
𝑘=1

𝑘!𝑛/𝑘

Proof. TODO

37.1 Appendix: More about entropy
Theorem 37.3 (Fact A).

𝐻(𝑋) ≤ log2(| supp 𝑋).
Proof. TODO

Theorem 37.4 (Fact B).
𝐻(𝑋, 𝑌 ) = 𝐻(𝑋) + 𝐻(𝑌 |𝑋).

Proof. TODO

Theorem 37.5 (Fact B).

𝐻(𝑌 |𝑋) ≤
𝑑

∑
𝑗=1

Prop(𝑋 ∈ 𝐸𝑗) log2 𝑗.

Proof. TODO
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Chapter 38

The Dinitz problem

Definition 38.1. Let ⃗𝐺 = (𝑉 , 𝐸) be a directed graph. A kernel 𝐾 ⊆ 𝑉 is a subset of the
vertices such that

(i) 𝐾 is independent in 𝐺, and

(ii) for every 𝑢 ∉ 𝐾 there exists a vertex 𝑣 ∈ 𝐾 with an edge 𝑢 → 𝑣.

Lemma 38.2. Let ⃗𝐺 = (𝑉 , 𝐸) be a directed graph, and suppose that for each vertex 𝑣 ∈ 𝑉 we
have a color set 𝐶(𝑣) that is larger than the outdegree, |𝐶(𝑣)| ≥ 𝑑+(𝑣) + 1. If every induced
subgraph of ⃗𝐺 possesses a kernel, then there exists a list coloring of 𝐺 with a color from 𝐶(𝑣) for
each 𝑣.

Proof. We proceed by induction on |𝑉 |. For |𝑉 | = 1 there is nothing to prove. Choose a color
𝑐 ∈ 𝒞 = ⋃𝑣∈𝑉 𝐶(𝑣) and set

𝐴(𝑐) ∶= {𝑣 ∈ 𝑉 ∶ 𝑐 ∈ 𝐶(𝑣)}.
By hypothesis, the induced subgraph 𝐺𝐴(𝑐) possesses a kernel 𝐾(𝑐). Now we color all 𝑣 ∈ 𝐾(𝑐)
with the color 𝑐 (this is possible since 𝐾(𝑐) is independent), and delete 𝐾(𝑐) from 𝐺 and 𝑐 from
𝐶. Let 𝐺′ be the induced subgraph of 𝐺 on 𝑉 ∖ 𝐾(𝑐) with 𝐶′(𝑣) = 𝐶(𝑣) ∖ {𝑐} as the new list of
color sets. Notice that for each 𝑣 ∈ 𝐴(𝑐) ∖ 𝐾(𝑐), the outdegree 𝑑+(𝑣) is decreased by at least 1
(due to condition (ii) of a kernel). So 𝑑+(𝑣) + 1 ≤ |𝐶′(𝑣)| still holds in ⃗𝐺′. The same condition
also holds for the vertices outside 𝐴(𝑐), since in this case the color sets 𝐶(𝑣) remain unchanged.
The new graph 𝐺′ contains fewer vertices than 𝐺, and we are done by induction.

Definition 38.3. A matching 𝑀 of 𝐺 = (𝑋 ∪ 𝑌 , 𝐸) is called stable if the following condition
holds: Whenever 𝑢𝑣 ∈ 𝐸 ∖ 𝑀 , 𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 , then either 𝑢𝑦 ∈ 𝑀 with 𝑦 > 𝑣 in 𝑁(𝑢) or 𝑥𝑣 ∈ 𝑀
with 𝑥 > 𝑢 in 𝑁(𝑣), or both.

Lemma 38.4. A stable matching always exists.

Proof. Consider the following algorithm. In the first stage all men 𝑢 ∈ 𝑋 propose to their top
choice. If a girl receives more than one proposal she picks the one she likes best and keeps him
on a string, and if she receives just one proposal she keeps that one on a string. The remaining
men are rejected and form the reservoir 𝑅. In the second stage all men in 𝑅 propose to their
next choice. The women compare the proposals (together with the one on the string, if there is
one), pick their favorite and put him on the string. The rest is rejected and forms the new set 𝑅.
Now the men in 𝑅 propose to their next choice, and so on. A man who has proposed to his last
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choice and is again rejected drops out from further consideration (as well as from the reservoir).
Clearly, after some time the reservoir 𝑅 is empty, and at this point the algorithm stops.

Claim. When the algorithm stops, then the men on the strings together with the corre-
sponding girls form a stable matching.

Notice first that the men on the string of a particular girl move there in increasing preference
(of the girl) since at each stage the girl compares the new proposals with the present mate and
then picks the new favorite. Hence if 𝑢𝑣 ∈ 𝐸 but 𝑢𝑣 ∉ 𝑀 , then either 𝑢 never proposed to 𝑣 in
which case he found a better mate before he even got around to 𝑣, implying 𝑢𝑦 ∈ 𝑀 with 𝑦 > 𝑣
in 𝑁(𝑢), or 𝑢 proposed to 𝑣 but was rejected, implying 𝑥𝑣 ∈ 𝑀 with 𝑥 > 𝑢 in 𝑁(𝑣). But this is
exactly the condition of a stable matching.

Theorem 38.5. We have 𝜒ℓ(𝑆𝑛) = 𝑛 for all 𝑛.

Proof. As before we denote the vertices of 𝑆𝑛 by (𝑖, 𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Thus (𝑖, 𝑗) and (𝑟, 𝑠) are
adjacent if and only if 𝑖 = 𝑟 or 𝑗 = 𝑠. Take any Latin square 𝐿 with letters from {1, 2, … , 𝑛}
and denote by 𝐿(𝑖, 𝑗) the entry in cell (𝑖, 𝑗). Next make 𝑆𝑛 into a directed graph ⃗𝑆𝑛 by orienting
the horizontal edges (𝑖, 𝑗) → (𝑖, 𝑗′) if 𝐿(𝑖, 𝑗) < 𝐿(𝑖, 𝑗′) and the vertical edges (𝑖, 𝑗) → (𝑖′, 𝑗)
if 𝐿(𝑖, 𝑗) > 𝐿(𝑖′, 𝑗). Thus, horizontally we orient from the smaller to the larger element, and
vertically the other way around. (In the margin we have an example for 𝑛 = 3.)

Notice that we obtain 𝑑+(𝑖, 𝑗) = 𝑛 − 1 for all (𝑖, 𝑗). In fact, if 𝐿(𝑖, 𝑗) = 𝑘, then 𝑛 − 𝑘 cells in
row 𝑖 contain an entry larger than 𝑘, and 𝑘 − 1 cells in column 𝑗 have an entry smaller than 𝑘.

By Lemma 38.2 it remains to show that every induced subgraph of ⃗𝑆𝑛 possesses a kernel.
Consider a subset 𝐴 ⊆ 𝑉 , and let 𝑋 be the set of rows of 𝐿, and 𝑌 the set of its columns.
Associate to 𝐴 the bipartite graph 𝐺 = (𝑋 ∪ 𝑌 , 𝐴), where every (𝑖, 𝑗) ∈ 𝐴 is represented by the
edge 𝑖𝑗 with 𝑖 ∈ 𝑋, 𝑗 ∈ 𝑌 . In the example in the margin the cells of 𝐴 are shaded.

The orientation on 𝑆𝑛 naturally induces a ranking on the neighborhoods in 𝐺 = (𝑋 ∪ 𝑌 , 𝐴)
by setting 𝑗′ > 𝑗 in 𝑁(𝑖) if (𝑖, 𝑗) → (𝑖, 𝑗′) in ⃗𝑆𝑛 respectively 𝑖′ > 𝑖 in 𝑁(𝑗) if (𝑖, 𝑗) → (𝑖′, 𝑗).
By Lemma 38.4, 𝐺 = (𝑋 ∪ 𝑌 , 𝐴) possesses a stable matching 𝑀 . This 𝑀 , viewed as a subset
of 𝐴, is our desired kernel! To see why, note first that 𝑀 is independent in 𝐴 since for edges
in 𝐺 = (𝑋 ∪ 𝑌 , 𝐴) they do not share an endvertex 𝑖 or 𝑗. Secondly, if (𝑖, 𝑗) ∈ 𝐴 ∖ 𝑀 , then
by the definition of a stable matching there either exists (𝑖, 𝑗′) ∈ 𝑀 with 𝑗′ > 𝑗 or (𝑖′, 𝑗) ∈ 𝑀
with 𝑖′ > 𝑖, which for ⃗𝑆𝑛 means (𝑖, 𝑗) → (𝑖, 𝑗′) ∈ 𝑀 or (𝑖, 𝑗) → (𝑖′, 𝑗) ∈ 𝑀 , and the proof is
complete.
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Chapter 39

Five-coloring plane graphs

Theorem 39.1. All planar graphs 𝐺 can be 5-colored:

𝜒ℓ(𝐺) ≤ 5.

Proof. TODO
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Chapter 40

How to guard a museum

Theorem 40.1. For any museum with 𝑛 walls, ⌊ 𝑛
3 ⌋ guards suffice.

Proof. First of all, let us draw 𝑛 − 3 noncrossing diagonals between corners of the walls until the
interior is triangulated. For example, we can draw 9 diagonals in the museum depicted in the
margin to produce a triangulation. It does not matter which triangulation we choose, any one
will do. Now think of the new figure as a plane graph with the corners as vertices and the walls
and diagonals as edges.

Claim. This graph is 3-colorable.
For 𝑛 = 3 there is nothing to prove. Now for 𝑛 > 3 pick any two vertices 𝑢 and 𝑣 which are

connected by a diagonal. This diagonal will split the graph into two smaller triangulated graphs
both containing the edge 𝑢𝑣. By induction we may color each part with 3 colors where we may
choose color 1 for 𝑢 and color 2 for 𝑣 in each coloring. Pasting the colorings together yields a
3-coloring of the whole graph.

The rest is easy. Since there are 𝑛 vertices, at least one of the color clsses, say the vertices
colored 1, contains at most ⌊ 𝑛

3 ⌋ vertices, and this is where we place the guards. Since every
triangle contains a vertex of color 1 we infer that every triangle is guarded, and hence so is the
whole museum.
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Chapter 41

Turán’s graph theorem

Theorem 41.1 (First Proof). If a graph 𝐺 = (𝑉 , 𝐸) on 𝑛 vertices has no 𝑝-clique, 𝑝 ≥ 2, then

|𝐸| ≤ (1 − 1
𝑝 − 1) 𝑛2

2 . (1)

Proof. We use induction on 𝑛. One easily computes that (1) is true for 𝑛 < 𝑝. Let 𝐺 be a graph
on 𝑉 = {𝑣1, … , 𝑣𝑛} without 𝑝-cliques with a maximal number of edges, where 𝑛 ≥ 𝑝. 𝐺 certainly
contains (𝑝 − 1)-cliques, since otherwise we could add edges. Let 𝐴 be a (𝑝 − 1)-clique, and set
𝐵 ∶= 𝑉 ∖ 𝐴.

𝐴 contains (𝑝−1
2 ) edges, and we now estimate the edge-number 𝑒𝐵 in 𝐵 and the edge-number

𝑒𝐴,𝐵 between 𝐴 and 𝐵. By induction, we have 𝑒𝐵 ≤ 1
2 (1 − 1

𝑝−1 ) (𝑛 − 𝑝 + 1)2. Since 𝐺 has
no 𝑝-clique, every 𝑣𝑗 ∈ 𝐵 is adjacent to at most 𝑝 − 2 vertices in 𝐴, and we obtain 𝑒𝐴,𝐵 ≤
(𝑝 − 2)(𝑛 − 𝑝 + 1). Altogether, this yields

|𝐸| ≤ (𝑝 − 1
2 ) + 1

2 (1 − 1
𝑝 − 1) (𝑛 − 𝑝 + 1)2 + (𝑝 − 2)(𝑛 − 𝑝 + 1),

which is precisely (1 − 1
𝑝−1 ) 𝑛2

2 .

Theorem 41.2 (Second Proof). If a graph 𝐺 = (𝑉 , 𝐸) on 𝑛 vertices has no 𝑝-clique, 𝑝 ≥ 2,
then

|𝐸| ≤ (1 − 1
𝑝 − 1) 𝑛2

2 . (1)

Proof. This proof makes use of the structure of the Turán graphs. Let 𝑣𝑚 ∈ 𝑉 be a vertex of
maximal degree 𝑑𝑚 = max1≤𝑗≤𝑛 𝑑𝑗. Denote by 𝑆 the set of neighbors of 𝑣𝑚, |𝑆| = 𝑑𝑚, and set
𝑇 ∶= 𝑉 ∖ 𝑆. As 𝐺 contains no 𝑝-clique, and 𝑣𝑚 is adjacent to all vertices of 𝑆, we note that 𝑆
contains no (𝑝 − 1)-clique.

We now construct the following graph 𝐻 on 𝑉 (see the figure). 𝐻 corresponds to 𝐺 on
𝑆 and contains all edges between 𝑆 and 𝑇 , but no edges within 𝑇 . In other words, 𝑇 is an
independent set in 𝐻, and we conclude that 𝐻 has again no 𝑝-cliques. Let 𝑑′

𝑗 be the degree of
𝑣𝑗 in 𝐻. If 𝑣𝑗 ∈ 𝑆, then we certainly have 𝑑′

𝑗 ≥ 𝑑𝑗 by the construction of 𝐻, and for 𝑣𝑗 ∈ 𝑇 ,
we see 𝑑′

𝑗 = |𝑆| = 𝑑𝑚 ≥ 𝑑𝑗 by the choice of 𝑣𝑚. We infer |𝐸(𝐻)| ≥ |𝐸|, and find that among
all graphs with a maximal number of edges, there must be one of the form of 𝐻. By induction,
the graph induced by 𝑆 has at most as many edges as a suitable graph 𝐾𝑛1,…,𝑛𝑝−2

on 𝑆. So
|𝐸| ≤ |𝐸(𝐻)| ≤ 𝐸(𝐾𝑛1,…,𝑛𝑝−1

) with 𝑛𝑝−1 = |𝑇 |, which implies (1).
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Theorem 41.3 (Third Proof). If a graph 𝐺 = (𝑉 , 𝐸) on 𝑛 vertices has no 𝑝-clique, 𝑝 ≥ 2, then

|𝐸| ≤ (1 − 1
𝑝 − 1) 𝑛2

2 . (1)

Proof. Consider a probability distribution w = (𝑤1, … , 𝑤𝑛) on the vertices, that is, an assignment
of values 𝑤𝑖 ≥ 0 to the vertices with ∑𝑛

𝑖=1 𝑤𝑖 = 1. Our goal is to maximize the function

𝑓(w) = ∑
𝑣𝑖𝑣𝑗∈𝐸

𝑤𝑖𝑤𝑗.

Suppose w is any distribution, and let 𝑣𝑖 and 𝑣𝑗 be a pair of nonadjacent vertices with
positive weights 𝑤𝑖, 𝑤𝑗. Let 𝑠𝑖 be the sum of the weights of all vertices adjacent to 𝑣𝑖, and define
𝑠𝑗 similarly for 𝑣𝑗, where we may assume that 𝑠𝑖 ≥ 𝑠𝑗. Now we move the weight from 𝑣𝑗 to 𝑣𝑖,
that is, the new weight of 𝑣𝑖 is 𝑤𝑖 +𝑤𝑗, while the weight of 𝑣𝑗 drops to 0. For the new distribution
w′ we find

𝑓(w′) = 𝑓(w) + 𝑤𝑗𝑠𝑖 − 𝑤𝑗𝑠𝑗 ≥ 𝑓(w).
We repeat this (reducing the number of vertices with a positive weight by one in each step)

until there are no nonadjacent vertices of positive weight anymore. Thus we conclude that there
is an optimal distribution whose nonzero weights are concentrated on a clique, say on a 𝑘-clique.
Now if, say, 𝑤1 ≥ 𝑤2 > 0, then choose 𝑤′

1 = 𝑤1 − 𝜀𝑤1 − 𝑤2 and change 𝑤1 to 𝑤1 − 𝜀 and 𝑤2 to
𝑤2 + 𝜀. The new distribution w′ satisfies 𝑓(w′) = 𝑓(w) + 𝜀(𝑤2𝑠1 − 𝑤1𝑠2) ≥ 𝑓(w), and we infer
that the maximal value of 𝑓(w) is attained for 𝑤𝑖 = 1/𝑘 on a 𝑘-clique and 𝑤𝑖 = 0 otherwise.
Since a 𝑘-clique contains (𝑘

2) edges, we obtain

𝑓(w) = (𝑘
2) 1

𝑘2 = 1
2 (1 − 1

𝑘) .

Since this expression is increasing in 𝑘, the best we can do is to set 𝑘 = 𝑝 − 1 (since 𝐺 has
no 𝑝-cliques). So we conclude

𝑓(w) ≤ 1
2 (1 − 1

𝑝 − 1)

for any distribution w. In particular, this inequality holds for the uniform distribution given by
𝑤𝑖 = 1

𝑛 for all 𝑖. Thus we find

|𝐸|
𝑛2 = 𝑓 (w = 1

𝑛) ≤ 1
2 (1 − 1

𝑝 − 1) ,

which is precisely (1).

Theorem 41.4 (Fourth Proof). If a graph 𝐺 = (𝑉 , 𝐸) on 𝑛 vertices has no 𝑝-clique, 𝑝 ≥ 2,
then

|𝐸| ≤ (1 − 1
𝑝 − 1) 𝑛2

2 . (1)

Proof. This time we use some concepts from probability theory. Let 𝐺 be an arbitrary graph on
the vertex set 𝑉 = {𝑣1, … , 𝑣𝑛}. Denote the degree of 𝑣𝑖 by 𝑑𝑖, and write 𝜔(𝐺) for the number of
vertices in a largest clique, called the clique number of 𝐺.

Claim. We have 𝜔(𝐺) ≥ ∑𝑛
𝑖=1

1
𝑛−𝑑𝑖

.
We choose a random permutation 𝜋 = 𝑣1𝑣2 … 𝑣𝑛 of the vertex set 𝑉 , where each permutation

is supposed to appear with the same probability 1
𝑛! , and then consider the following set 𝐶𝜋. We
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put 𝑣𝑖 into 𝐶𝜋 if and only if 𝑣𝑖 is adjacent to all 𝑣𝑗 (𝑗 < 𝑖) preceding 𝑣𝑖. By definition, 𝐶𝜋 is
a clique in 𝐺. Let 𝑋 = |𝐶𝜋| be the corresponding random variable. We have 𝑋 = ∑𝑛

𝑖=1 𝑋𝑖,
where 𝑋𝑖 is the indicator random variable of the vertex 𝑣𝑖, that is, 𝑋𝑖 = 1 or 𝑋𝑖 = 0 depending
on whether 𝑣𝑖 ∈ 𝐶𝜋 or 𝑣𝑖 ∉ 𝐶𝜋. Note that 𝑣𝑖 belongs to 𝐶𝜋 with respect to the permutation
𝑣1𝑣2 … 𝑣𝑛 if and only if 𝑣𝑖 appears before all 𝑛 − 1 − 𝑑𝑖 vertices which are not adjacent to 𝑣𝑖, or
in other words, if 𝑣𝑖 is the first among 𝑣𝑖 and its 𝑛 − 1 − 𝑑𝑖 non-neighbors. The probability that
this happens is 1

𝑛−𝑑𝑖
, hence 𝐸𝑋𝑖 = 1

𝑛−𝑑𝑖
.

Thus by linearity of expectation (see ?) we obtain

𝐸(|𝐶𝜋|) = 𝐸𝑋 =
𝑛

∑
𝑖=1

𝐸𝑋𝑖 =
𝑛

∑
𝑖=1

1
𝑛 − 𝑑𝑖

.

Consequently, there must be a clique of at least that size, and this was our claim. To deduce
Turán’s theorem from the claim we use the Cauchy–Schwarz inequality from Chapter 20,

(
𝑛

∑
𝑖=1

𝑎𝑖𝑏𝑖)
2

≤ (
𝑛

∑
𝑖=1

𝑎2
𝑖 ) (

𝑛
∑
𝑖=1

𝑏2
𝑖 ) .

Set 𝑎𝑖 = √𝑛 − 𝑑𝑖, 𝑏𝑖 = 1
√𝑛−𝑑𝑖

, then 𝑎𝑖𝑏𝑖 = 1, and so

𝑛2 ≤ (
𝑛

∑
𝑖=1

(𝑛 − 𝑑𝑖)) (
𝑛

∑
𝑖=1

1
𝑛 − 𝑑𝑖

) ≤ 𝜔(𝐺)
𝑛

∑
𝑖=1

(𝑛 − 𝑑𝑖). (2)

At this point we apply the hypothesis 𝜔(𝐺) ≤ 𝑝−1 of Turán’s theorem. Using also ∑𝑛
𝑖=1 𝑑𝑖 =

2|𝐸| from the chapter on double counting, inequality (2) leads to

𝑛2 ≤ (𝑝 − 1)(𝑛2 − 2|𝐸|),

and this is equivalent to Turán’s inequality.

Theorem 41.5 (Fifth Proof). If a graph 𝐺 = (𝑉 , 𝐸) on 𝑛 vertices has no 𝑝-clique, 𝑝 ≥ 2, then

|𝐸| ≤ (1 − 1
𝑝 − 1) 𝑛2

2 . (1)

Proof. Let 𝐺 be a graph on 𝑛 vertices without a 𝑝-clique and with a maximal number of edges.
Claim. G does not contain three vertices 𝑢, 𝑣, 𝑤 such that 𝑣𝑤 ∈ 𝐸, but 𝑢𝑣 ∉ 𝐸, 𝑢𝑤 ∉ 𝐸.
Suppose otherwise, and consider the following cases.
Case 1: 𝑑(𝑢) < 𝑑(𝑣) or 𝑑(𝑢) < 𝑑(𝑤). We may suppose that 𝑑(𝑢) < 𝑑(𝑣). Then we duplicate

𝑣, that is, we create a new vertex 𝑣′ which has exactly the same neighbors as 𝑣 (but 𝑣′ is not an
edge), delete 𝑢, and keep the rest unchanged. The new graph 𝐺′ has again no 𝑝-clique, and for
the number of edges we find

|𝐸(𝐺′)| = |𝐸(𝐺)| + 𝑑(𝑣) − 𝑑(𝑢) > |𝐸(𝐺)|,

a contradiction.
Case 2: 𝑑(𝑢) ≥ 𝑑(𝑣) and 𝑑(𝑢) ≥ 𝑑(𝑤). Duplicate 𝑢 twice and delete 𝑣 and 𝑤 (as illustrated

in the margin). Again, the new graph 𝐺′ has no 𝑝-clique, and we compute (the −1 results from
the edge 𝑣𝑤):

|𝐸(𝐺′)| = |𝐸(𝐺)| + 2𝑑(𝑢) − (𝑑(𝑣) + 𝑑(𝑤) − 1) > |𝐸(𝐺)|.
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So we have a contradiction once more. A moment’s thought shows that the claim we have proved
is equivalent to the statement that

𝑢 ∼ 𝑣 ∶ ⟺ 𝑢𝑣 ∉ 𝐸(𝐺)

defines an equivalence relation. Thus 𝐺 is a complete multipartite graph, 𝐺 = 𝐾𝑛1,…,𝑛𝑝−1
, and

we are finished.

Theorem 41.6 (Five proofs of Turán’s graph theorem). Collecting the proofs from the chapter...

Proof.
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Chapter 42

Communicating without errors

Theorem 42.1. Whenever 𝑇 = {𝑣(1), … , 𝑣(𝑚)} is an orthonormal representation of 𝐺 with
constant 𝜎𝑇 , then

Θ(𝐺) ≤ 1
𝜎𝑇

.

Proof. TODO
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Chapter 43

The chromatic number of Kneser
graphs

Theorem 43.1 (Lyusternik–Shnirel’man). If the 𝑑-sphere 𝑆𝑑 is covered by 𝑑 + 1 sets,

𝑆𝑑 = 𝑈1 ∪ ⋯ ∪ 𝑈𝑑 ∪ 𝑈𝑑+1,

such that each of the first 𝑑 sets 𝑈1, … , 𝑈𝑑 is either open or closed, then one of the 𝑑 + 1 sets
contains a pair of antipodal points 𝑥∗, −𝑥∗.

Proof. Let a covering 𝑆𝑑 = 𝑈1 ∪ ⋯ ∪ 𝑈𝑑 ∪ 𝑈𝑑+1 be given as specified, and assume that there are
no antipodal points in any of the sets 𝑈𝑖. We define a map 𝑓 ∶ 𝑆𝑑 → ℝ𝑑 by

𝑓(𝑥) ∶= (𝛿(𝑥, 𝑈1), 𝛿(𝑥, 𝑈2), … , 𝛿(𝑥, 𝑈𝑑)).

Here 𝛿(𝑥, 𝑈𝑖) denotes the distance of 𝑥 from 𝑈𝑖. Since this is a continuous function in 𝑥, the
map 𝑓 is continuous. Thus the Borsuk–Ulam theorem tells us that there are antipodal points
𝑥∗, −𝑥∗ with 𝑓(𝑥∗) = 𝑓(−𝑥∗). Since 𝑈𝑑+1 does not contain antipodes, we get that at least one
of 𝑥∗ and −𝑥∗ must be contained in one of the sets 𝑈𝑖, say in 𝑈𝑘 (𝑘 ≤ 𝑑). After exchanging 𝑥∗

with −𝑥∗ if necessary, we may assume that 𝑥∗ ∈ 𝑈𝑘. In particular this yields 𝛿(𝑥∗, 𝑈𝑘) = 0, and
from 𝑓(𝑥∗) = 𝑓(−𝑥∗) we get that 𝛿(−𝑥∗, 𝑈𝑘) = 0 as well.

If 𝑈𝑘 is closed, then 𝛿(−𝑥∗, 𝑈𝑘) = 0 implies that −𝑥∗ ∈ 𝑈𝑘, and we arrive at the contradiction
that 𝑈𝑘 contains a pair of antipodal points.

If 𝑈𝑘 is open, then 𝛿(−𝑥∗, 𝑈𝑘) = 0 implies that −𝑥∗ lies in 𝑈𝑘, the closure of 𝑈𝑘. The set
𝑈𝑘, in turn, is contained in 𝑆𝑑 ∖ (𝑈𝑘), since this is a closed subset of 𝑆𝑑 that contains 𝑈𝑘.
But this means that −𝑥∗ lies in 𝑆𝑑 ∖ (𝑈𝑘), so it cannot lie in −𝑈𝑘, and 𝑥∗ cannot lie in 𝑈𝑘, a
contradiction.

Theorem 43.2 (Gale’s theorem). There is an arrangement of 2𝑘 + 𝑑 points on 𝑆𝑑 such that
every open hemisphere contains at least 𝑘 of these points.

Proof.

Theorem 43.3 (Kneser’s conjecture). We have

𝜒(𝐾(2𝑘 + 𝑑, 𝑘)) = 𝑑 + 2.
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Proof. For our ground set let us take 2𝑘+𝑑 points in general position on the sphere 𝑆𝑑+1. Suppose
the set 𝑉 (𝑛, 𝑘) of all 𝑘-subsets of this set is partitioned into 𝑑+1 classes, 𝑉 (𝑛, 𝑘) = 𝑉1 ∪̇ … ∪̇ 𝑉𝑑+1.
We have to find a pair of disjoint 𝑘-sets 𝐴 and 𝐵 that belong to the same class 𝑉𝑖.

For 𝑖 = 1, … , 𝑑 + 1 we set

𝑂𝑖 = {𝑥 ∈ 𝑆𝑑+1 ∶ the open hemisphere 𝐻𝑥 with pole 𝑥 contains a 𝑘-set from 𝑉𝑖}.

Clearly, each 𝑂𝑖 is an open set. Together, the open sets 𝑂𝑖 and the closed set 𝐶 = 𝑆𝑑+1 ∖ (𝑂1 ∪
⋯ ∪ 𝑂𝑑+1) cover 𝑆𝑑+1. Invoking Lyusternik–Shnirel’man (43.1) we know that one of these sets
contains antipodal points 𝑥∗ and −𝑥∗. This set cannot be 𝐶! Indeed, if 𝑥∗, −𝑥∗ ∈ 𝐶, then by the
definition of the 𝑂𝑖’s, the hemispheres 𝐻𝑥∗ and 𝐻−𝑥∗ would contain fewer than 𝑘 points. This
means that at least 𝑑 + 2 points would be on the equator 𝐻𝑥∗ ∩ 𝐻−𝑥∗ with respect to the north
pole 𝑥∗, that is, on a hyperplane through the origin. But this cannot be since the points are in
general position. Hence some 𝑂𝑖 contains a pair 𝑥∗, −𝑥∗, so there exist 𝑘-sets 𝐴 and 𝐵 both in
class 𝑉𝑖, with 𝐴 ⊂ 𝐻𝑥∗ and 𝐵 ⊂ 𝐻−𝑥∗ .

But since we are talking about open hemispheres, 𝐻𝑥∗ and 𝐻−𝑥∗ are disjoint, hence 𝐴 and 𝐵
are disjoint, and this is the whole proof.

43.1 Appendix: A proof sketch for the Borsuk–Ulam the-
orem

Theorem 43.4. For every continuous map 𝑓 ∶ 𝑆𝑑 → ℝ𝑑 from 𝑑-sphere to 𝑑-space, there are
antipodal points 𝑥∗, −𝑥∗ that are mapped to the same point 𝑓(𝑥∗) = 𝑓(−𝑥∗).
Proof. TODO
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Chapter 44

Of friends and politicians

Theorem 44.1. Suppose that 𝐺 is a finite graph in which any two vertices have precisely one
common neighbor. Then there is a vertex which is adjacent to all other vertices.

Proof. Suppose the assertion is false, and 𝐺 is a counterexample, that is, no vertex of 𝐺 is
adjacent to all other vertices. To derive a contradiction, we proceed in two steps. The first part
is combinatorics, and the second part is linear algebra.

(1) We claim that 𝐺 is a regular graph, that is, 𝑑(𝑢) = 𝑑(𝑣) for any 𝑢, 𝑣 ∈ 𝑉 .
Note first that the condition of the theorem implies that there are no cycles of length 4 in 𝐺.

Let us call this the 𝐶4-condition.
We first prove that any two nonadjacent vertices 𝑢 and 𝑣 have equal degree 𝑑(𝑢) = 𝑑(𝑣).

Suppose 𝑑(𝑢) = 𝑘, where 𝑤1, … , 𝑤𝑘 are the neighbors of 𝑢. Exactly one of the 𝑤𝑖, say 𝑤2, is
adjacent to 𝑣, and 𝑤2 is adjacent to exactly one of the other 𝑤𝑖’s, say 𝑤1, so that we have the
situation of the figure to the left. The vertex 𝑣 has with 𝑤1 the common neighbor 𝑤2, and with
𝑤𝑖 (𝑖 ≥ 2) a common neighbor 𝑧𝑖 (𝑖 ≥ 2). By the 𝐶4-condition, all these 𝑧𝑖 must be distinct. We
conclude 𝑑(𝑣) ≥ 𝑘 = 𝑑(𝑢), and thus 𝑑(𝑢) = 𝑑(𝑣) = 𝑘 by symmetry.

To finish the proof of (1), observe that any vertex different from 𝑤2 is not adjacent to either 𝑢
or 𝑣, and hence has degree 𝑘, by what we already proved. But since 𝑤2 also has a non-neighbor,
it has degree 𝑘 as well, and thus 𝐺 is 𝑘-regular.

Summing over the degrees of the 𝑘 neighbors of 𝑢 we get 𝑘2. Since every vertex (except 𝑢)
has exactly one common neighbor with 𝑢, we have counted every vertex once, except for 𝑢, which
was counted 𝑘 times. So the total number of vertices of 𝐺 is

𝑛 = 𝑘2 − 𝑘 + 1.

(2) The rest of the proof is a beautiful application of some standard results of linear algebra.
Note first that 𝑘 must be greater than 2, since for 𝑘 ≤ 2 only 𝐺 = 𝐾1 and 𝐺 = 𝐾3 are possible
by (1), both of which are trivial windmill graphs. Consider the adjacency matrix 𝐴 = (𝑎𝑖𝑗), as
defined on page 282. By part (1), any row has exactly 𝑘 1’s, and by the condition of the theorem,
for any two rows there is exactly one column where they both have a 1. Note further that the
main diagonal consists of 0’s. Hence we have

𝐴2 =
⎛⎜⎜⎜
⎝

𝑘 1 … 1
1 𝑘 1
⋮ ⋱ ⋱ ⋮
1 … 1 𝑘

⎞⎟⎟⎟
⎠

= (𝑘 − 1)𝐼 + 𝐽,
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where 𝐼 is the identity matrix, and 𝐽 the matrix of all 1’s. It is immediately checked that 𝐽
has the eigenvalues 𝑛 (of multiplicity 1) and 0 (of multiplicity 𝑛 − 1). It follows that 𝐴2 has the
eigenvalues 𝑘 − 1 + 𝑛 = 𝑘2 (of multiplicity 1) and 𝑘 − 1 (of multiplicity 𝑛 − 1).

Since 𝐴 is symmetric and hence diagonalizable, we conclude that 𝐴 has the eigenvalues 𝑘 (of
multiplicity 1) and ±

√
𝑘 − 1. Suppose 𝑟 of the eigenvalues are equal to

√
𝑘 − 1 and 𝑠 of them are

equal to −
√

𝑘 − 1, with 𝑟+𝑠 = 𝑛−1. Now we are almost home. Since the sum of the eigenvalues
of 𝐴 equals the trace (which is 0), we find

𝑘 + 𝑟
√

𝑘 − 1 − 𝑠
√

𝑘 − 1 = 0,

and, in particular, 𝑟 ≠ 𝑠, and √
𝑘 − 1 = 𝑘

𝑠 − 𝑟 .

Now if the square root
√𝑚 of a natural number 𝑚 is rational, then it is an integer! An elegant

proof for this was presented by Dedekind in 1858: Let 𝑛0 be the smallest natural number with
𝑛0

√𝑚 ∈ ℕ. If
√𝑚 ∉ ℕ, then there exists ℓ ∈ ℕ with 0 < √𝑚−ℓ < 1. Setting 𝑛1 ∶= 𝑛0(√𝑚−ℓ),

we find 𝑛1 ∈ ℕ and 𝑛1
√𝑚 = 𝑛0(√𝑚 − ℓ)√𝑚 = 𝑛0𝑚 − ℓ(𝑛0

√𝑚) ∈ ℕ. With 𝑛1 < 𝑛0 this yields
a contradiction to the choice of 𝑛0.

Returning to our equation, let us set ℎ =
√

𝑘 − 1 ∈ ℕ, then

ℎ(𝑠 − 𝑟) = 𝑘 = ℎ2 + 1.

Since ℎ divides ℎ2 + 1 and ℎ2, we find that ℎ must be equal to 1, and thus 𝑘 = 2, which we
have already excluded. So we have arrived at a contradiction, and the proof is complete.
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Chapter 45

Probability makes counting
(sometimes) easy

Theorem 45.1. Every family of at most 2𝑑−1 𝑑-sets is 2-colorable, that is, 𝑚(𝑑) > 2𝑑−1.

Proof. TODO

Theorem 45.2. Every family of at most 2𝑑−1 𝑑-sets is 2-colorable, that is, 𝑚(𝑑) > 2𝑑−1.

Proof. TODO

Theorem 45.3. For every 𝑘 ≥ 2, there exists a graph 𝐺 with chromatic number 𝜒(𝐺) > 𝑘 and
girth 𝛾(𝐺) > 𝑘.

Proof. TODO

Theorem 45.4. Let 𝐺 be a simple graph with 𝑛 vertices and 𝑚 edges, where 𝑚 ≥ 4𝑛. Then

cr(𝐺) ≥ 1
64

𝑚3

𝑛2 .

Proof. TODO
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