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Einleitung

Zuerst geben wir eine kurze allgemeine Einführung zu den Themen, die in dieser Arbeit behandelt
werden. Wir nennen unser Hauptresultat und erklären die Inhalte der einzelnen Kapitel.

Äquivarianter Bordismus ist eine Methode, Mannigfaltigkeiten mit Gruppenwirkung besser zu
verstehen. Es gibt zwei verschiedene Zugänge zu Bordismus; einen geometrischen und einen homo-
topietheoretischen. Für eine fest gewählte Gruppe G wird geometrischer äquivarianter Bordismus
durch eine Äquivalenzrelation auf geschlossenen Mannigfaltigkeiten mit G-Wirkung definiert. Homo-
topietheoretischer äquivarianter Bordismus ist die zum äquivarianten Thomspektrum assoziierte Ho-
mologietheorie. Die Pontrjagin1–Thom Konstruktion gibt eine Abbildung von geometrischem in den
homotopietheoretischen Bordismus. Im nicht-äquivarianten Fall, daß heißt falls G die triviale Grup-
pe ist, ist diese Abbildung ein Isomorphismus. Falls G nicht-trivial ist, so ist die Pontrjagin–Thom
Abbildung kein Isomorphismus. Dadurch wird die Beschreibung von äquivariantem Bordismus kom-
plizierter.

Es gibt reelle und komplexe Mannigfaltigkeiten und reelle und komplexe Vektorbündel; das führt
zu reellen und komplexen Bordismustheorien. Wir konzentrieren uns auf reellen Bordismus und die
Gruppen, für die wir uns interessieren, sind Produkte von Z/2, also G = (Z/2)k für ein k.

Unsere Beschreibung von äquivariantem Bordismus für G = Z/2 × · · · × Z/2 führt zu dem
Hauptresultat, Theorem 3.5.2, welches hier schon einmal genannt werden soll.

Satz. Das folgende Diagramm ist ein Pullback-Quadrat, in dem alle Abbildungen injektiv sind.

NG
∗

PT

��

φN // MO∗[e
−1
V , Yd,V ]

i

��

MOG
∗

ι◦φMO // MO∗[eV , e
−1
V , Yd,V ].

(~)

Links stehen geometrischer und homotopietheoretischer reeller äquivarianter Bordismus und die
senkrechte Abbildung ist die oben erwähnte Pontrjagin–Thom Abbildung. Auf der rechten Seite
stehen Polynomringe und als senkrechte Abbildung eine Inklusion. Die Polynomringe sind über
MO∗, dem reellen nicht-äquivariantem Bordismusring. Dessen Struktur wird in Kapitel 2 erklärt.
Theorem 3.5.2 ist die reelle Version eines Satzes von Hanke [Han05, Theorem 1] und wir benutzen
die gleichen Mittel wie er in seinem Beweis.

Kapitel 1 ist eine Einführung in alle Begriffe, die nötig sind, um den Rest der Arbeit zu formu-
lieren. Zuerst rufen wir die Grundlagen äquivarianter Topologie in Erinnerung. Dann stellen wir die
grundlegenden Ideen äquivarianter Spektra und (Ko)homologietheorien dar. Hier wählen wir Mays
Zugang (siehe etwa [MPC96], [LMS86]), der ein vollständiges G-Universum, welches alle Isomorphie-
klassen reeller G-Darstellungen enthält, für die Indizierung benutzt. Diese Werkzeuge erlauben uns,
das reelle äquivariante Thomspektrum und damit homotopietheoretischen äquivarianten Bordismus
zu definieren. Nachdem auch geometrischer äquivarianter Bordismus definiert wird, skizzieren wir
die äquivariante Pontrjagin–Thom Konstruktion, welche eine Abbildung von geometrischem in den

1Umschrift seines russischen Namens Понтрягин.



2 Einleitung

homotopietheoretischen Bordismus liefert. Die Begriffe „Familien von Untergruppen“ und Homologie-
theorien assoziiert zu solchen Familien werden vorgestellt und das führt auf zwei exakte Sequenzen:
der Conner–Floyd Sequenz im geometrischem Bordismus und der tom Dieck Sequenz im homoto-
pietheoretischem Bordismus. Die Tatsache, daß die Pontrjagin–Thom Abbildung für nicht-triviale
Gruppen nicht surjektiv, ist folgt aus Proposition 1.8.2, in der Bedingungen dafür genannt werden,
daß gewisse Elemente aus homotopietheoretischem äquivariantem Bordismus, genannt Eulerklassen,
nicht-trivial sind.

In diesem Kapitel werden sowohl reeller als auch komplexer Bordismus definiert, aber der reelle
Fall wird in größerer Ausführlichkeit behandelt; erstens weil Theorem 3.5.2 eine Aussage über reellen
Bordismus ist und zweitens weil der komplexe Bordismus bereits besser in der Literatur beschrieben
ist.

Im zweiten Kapitel nennen wir einige bekannte Ergebnisse ohne deren Beweise zu wiederholen.
Wir fangen mit der nicht-äquivarianten Pontrjagin–Thom Abbildung an und fahren mit reellem
äquivariantem Bordismus fort. Die Ergebnisse von Sinha [Sin02] für G = Z/2 werden erwähnt, weil
sie einen Spezialfall für die allgemeinere Annahme G = Z/2×· · ·×Z/2 darstellen. Das Kapitel endet
mit Ergebnissen über die Injektivität von der reellen und komplexen Pontrjagin–Thom Abbildung
in bestimmten Fällen.

Das Ziel von Kapitel 3 ist es, Hankes Arbeit [Han05] aus dem komplexen in die reelle Umgebung
zu übersetzen. Dafür müssen wir die Gruppe, die Hanke benutzt, nämlich den n-Torus S1×· · ·×S1,
durch die Gruppe Z/2 × · · · × Z/2 ersetzen. (S1 ist Retrakt von C× genauso wie Z/2 Retrakt von
R× ist; das läßt diese Veränderung plausibel erscheinen.) Die erste Schwierigkeit ist, die waagerech-
ten Abbildungen in (~) und die Polynomringe auf der rechten Seite zu definieren. Dafür wird eine
Einschränkung auf Fixpunktmengen benutzt, in einer Art, die auf tom Dieck [tD70] zurückgeht. Die
Injektivität der unteren waagerechten Abbildung in (~) ist eine Folgerung aus Lokalisierungsargu-
menten, welche in Abschnitt 3.2 besprochen werden. Das sind alle Instrumente, die für den Beweis
von Theorem 3.5.2 benötigt werden. Die Beweisidee ist, das Quadrat als Teil der Pontrjagin–Thom
Abbildung zwischen der exakten Sequenz von Conner–Floyd und der exakten Sequenz von tom
Dieck zu identifizieren. Dann wird die Exaktheit dieser Sequenzen zusammen mit Ergebnissen über
Injektivität bestimmter Abbildungen in einer Diagrammjagd benutzt. Als Korollar erhalten wir eine
Beschreibung des geometrischen reellen äquivarianten Bordismusrings. Das Kapitel endet mit einem
Vergleich von unseren Ergebnissen mit denen von Sinha [Sin02] für den Fall G = Z/2.

Kapitel 4 zeigt die Grenzen unseres Satzes. Insbesondere zeigen wir durch zwei Gegenbeispiele,
daß Theorem 3.5.2 versagt falls G nicht die Gestalt Z/2×· · ·×Z/2 hat. Im letzten Kapitel sammeln
wir einige unbeantwortete Fragen, die sich aus den vorherigen Ergebnissen ergeben.

Für die gute Betreuung durch Professor Jens Hornbostel möchte ich mich herzlich bedanken;
er hat sich immer Zeit für meine Fragen genommen und mir gleichzeitig die Möglichkeit gegeben,
eigenständig zu arbeiten. Besonders dankbar bin ich dafür, daß er mich ermutigt hat, ein Jahr in
Paris zu verbringen und für seine Zusammenarbeit mit Professor Bob Oliver während dieser Zeit.



Introduction

First we give a short general introduction to the subjects treated in this text. We state our main
result and explain the content of the individual chapters.

Equivariant bordism is a tool in the study of manifolds with a group action. There is a geometric
and a homotopic approach to bordism. After fixing a compact Lie group G, geometric equivariant
bordism is defined in terms of equivalence classes of closed manifolds with G acting on it. Homo-
topic equivariant bordism is the homology theory associated to the equivariant Thom spectrum.
An assignment, called the Pontryagin1–Thom construction gives rise to a map from geometric to
homotopic equivariant bordism. In the non-equivariant case, i.e. if G is the trivial group, this map
is an isomorphism. If G is non-trivial, the Pontryagin–Thom map is not an isomorphism. This is
what makes the description of equivariant bordism complicated.

There are real and complex manifolds and there are real and complex vector bundles; this leads
to real and complex bordism theories. In this text we focus on real bordism and the groups of
interest are products of Z/2, i.e. G = (Z/2)k for some k.

Our characterization of equivariant bordism for G = Z/2 × · · · × Z/2 culminates in Theorem
3.5.2 and we state it already here for convenience.

Theorem. The following diagram is a pull-back with all maps injective:

NG
∗

PT

��

φN // MO∗[e
−1
V , Yd,V ]

i

��

MOG
∗

ι◦φMO // MO∗[eV , e
−1
V , Yd,V ].

(~)

On the left hand side we have geometric and homotopic real equivariant bordism and the Pon-
tryagin–Thom map between them. On the right hand side there are certain polynomial rings and
the map between them is an inclusion. The polynomial rings are over MO∗, the real non-equivariant
bordism ring. This ring is well understood as explained in Chapter 2. Our Theorem 3.5.2 is the real
version of a theorem by Hanke [Han05, Theorem 1] and we use the same techniques he uses in his
proof.

Chapter 1 is an introduction to all the concepts needed to formulate the rest of the text. First we
recall the basics of equivariant topology. We then present the fundamental concepts of equivariant
spectra and (co)homology theories. Here we choose May’s approach (as in [MPC96] and [LMS86]),
using a complete G-universe containing all isomorphism classes of G-representations for indexing.
These tools allow us to define the real equivariant Thom spectrum and homotopic real equivariant
bordism. After defining geometric real equivariant bordism we sketch the equivariant Pontrya-
gin–Thom construction, which gives a map from geometric to homotopic real equivariant bordism.
The notion of families of subgroups and homology theories associated to those families of subgroups
is defined and this leads to Proposition 1.8.2, which gives conditions under what circumstances
certain elements in homotopic equivariant bordism, called Euler classes, are trivial.

1Transliteration of his Russian name Понтрягин.



4 Introduction

Both real and complex bordism theories are defined in this chapter, but the real case is always
discussed in more detail. This is because we will need real equivariant bordism in our theorem and
also because the complex theory is already better documented in the literature.

In the second chapter we state some known results without giving proofs. We begin with the
non-equivariant Pontryagin–Thom map and continue with real equivariant bordism. The results of
Sinha [Sin02] for G = Z/2 are mentioned, since they constitute a special case of our more general
assumption G = Z/2× · · · × Z/2. Results about the injectivity of the real and complex equivariant
Pontryagin–Thom map for certain groups conclude the chapter.

The aim of Chapter 3 is to translate Hanke’s paper [Han05] from the complex into the real
setting. This requires changing the group Hanke uses, namely the n-torus S1×· · ·×S1 to the group
Z/2× · · · × Z/2. (Note that S1 is a retract of C× and Z/2 is a retract of R×, so this change might
seem plausible.) The first difficulty is to define the horizontal maps in (~) and the polynomial rings
on the right hand side. Here restriction to fixed sets is used, in a form that goes back to a paper
by tom Dieck [tD70]. Injectivity of the lower horizontal map in (~) is a consequence of localization
results that are discussed in Section 3.2. Then we consider equivariant bordism with respect to
families.

This gives us all the instruments we need to complete the proof of Theorem 3.5.2. The idea of the
proof is to identify the square (~) as part of the diagram that is the Pontryagin–Thom map between
the Conner–Floyd exact sequence and the tom Dieck exact sequence. Then the exactness of these
sequences and injectivity results are used in a diagram chase. As a corollary we get a description
of the geometric real equivariant bordism ring. The chapter closes with a comparison of our result
with Sinha’s [Sin02] for G = Z/2.

Chapter 4 shows the limitations of our main result. In particular we show by two counterexamples
that it fails if G is not of the form Z/2× · · · × Z/2.

In the last chapter we point out some unanswered questions that can be asked in view of the
prior results.

I would like to thank my advisor Professor Jens Hornbostel. He always supported me by listening
to my questions, while giving me the freedom to work on my own. I am especially grateful for his
encouragement to spend a year in Paris and his cooperation with Professor Bob Oliver during that
time.



1 Basics and Notation

This chapter is a swift introduction to equivariant geometric and homotopic bordism. After intro-
ducing the notation of basic concepts of equivariant topology we go on to explain how equivariant
spectra and equivariant (co)homology theories are interrelated. Finally the basic notions of equiv-
ariant bordism are exhibited. We present both real and complex bordism, but since the real case is
more important to us, we sometimes only fix notation and give references for the complex case.

1.1 Equivariant topology
Our introduction follows and uses the notation of Chapter I of [MPC96]. By U we denote the
category of (unbased) compactly generated spaces (in the sense of May [May99, Chapter 5]) and
continuous maps. By T we denote the category of based (or pointed) compactly generated spaces
and continuous maps that preserve the base point, i.e. pointed maps. When we talk about “(based)
spaces” and “maps” we usually mean objects and morphisms in one of these categories. By Ab we
denote the category of Abelian groups. Let G be a topological group. Notice that G can be viewed
as a based space by taking the identity to be the base point.

A G-space is a space X together with a map G×X → X such that

ex = x

for the identity e of G and
g(hx) = (gh)x

for all g, h ∈ G, x ∈ X. For based spaces the map G×X → X is assumed to fix the base point ∗ of
X, i.e. g∗ = ∗ for all g ∈ G. The space consisting of one point with the only possible G-action will
sometimes be denoted by pt. A map φ : X → Y between two G-spaces is equivariant or a G-map
if φ(gx) = gφ(x) for all g ∈ G, x ∈ X. This results in two categories. By GU we denote the category
of (unbased) G-spaces and equivariant maps. By GT we denote the category of based G-spaces,
such that the G-action fixes the base point and pointed equivariant maps. If it is clear from context
we will sometimes just say “map” instead of “G-map”. Given an unbased G-space X, we denote its
disjoint union with a base point with trivial G-action by X+. This gives a based G-space.

Constructions in GU and GT are similar to those in the non-equivariant categories, we will
shortly mention a few. For a thorough introduction see tom Dieck’s book [tD87]. For a family
{Xi}i∈I of G-spaces we define a G-action on the product of spaces

∏
i∈I Xi by

g(xi | i ∈ I) := (gxi | i ∈ I).

This is called the diagonal action. We write Map(X,Y ) for the space of maps X → Y, with the
compact-open topology (see [May99, Chapter 3]). This can be given the structure of a G-space by
conjugation:

(gφ)(x) := gφ(g−1x)

for φ ∈ Map(X,Y ). Notice that there is a G-homeomorphism by the usual adjunction

Map(X × Y,Z) → Map(X,Map(Y, Z)).



6 Basics and Notation

Given two based G-spaces X and Y we can identify their base points to obtain the wedge X ∨ Y ,
again a based G-space. We define the smash product to be

X ∧ Y := X × Y/X ∨ Y.

We write F(X,Y ) for the based space of based maps X → Y. This can again be given the structure
of a based G-space by conjugation. Similarly we have a based G-homeomorphism

F(X ∧ Y, Z) → F(X,F(Y,Z)).

For a G-space X the isotropy group of a point x ∈ X is the subgroup
Gx = {g ∈ G | gx = x}

of G. Two subgroups H and K of a group are called conjugate if there is a g ∈ G such that
H = gKg−1. In that case we write H ∼ K.

We assume all subgroups of G to be closed. For a subgroup H ⊂ G we have the fixed point set
XH := {x ∈ X |hx = x for all h ∈ H}.

A G-map f : X → Y induces maps fH : XH → Y H for every subgroup H ⊂ G. A homotopy
between unbased G-spaces is a G-map h : X × [0, 1] → Y , where [0, 1] is given the trivial G-action.
This notion of homotopy gives us the homotopy category hGU . A weak equivalence is a G-map
f : X → Y such that fH : XH → Y H is a weak equivalence in the category of spaces for all
subgroups H ⊂ G, i.e. it induces an isomorphism on all homotopy groups. This definition can be
extended to a model structure on GU . Cofibrations are defined by the homotopy extension property,
fibrations by the covering homotopy property. All maps are taken to be equivariant. By formally
inverting the weak equivalences we obtain the category hGU . For more details see [MPC96, Chapter
IV], for the model structures see [MM02, Chapter III.1]. For based G-spaces a homotopy is a map
h : X ∧ [0, 1]+ → X, where [0, 1]+ is given the trivial G-action. As in the unbased case one defines
the categories hGT and hGT .

Definition 1.1.1. For two objects X and Y in hGT we denote the set of morphisms from X to Y
in hGT by [X,Y ]G.

There is a concept of equivariant CW -complexes, that is very similar to ordinary CW -complexes.
A G-complex X is a CW -complex which is also a G-space such that XH is a subcomplex for any
subgroup H ⊂ G. Details can be found in [MPC96, Chapter I.3].

1.2 Equivariant spectra and (co)homology theories
From now on, let G be a compact Lie group.

We follow [MPC96, Chapters IX and XIII] and [LMS86, Chapters I and II].

Equivariant spectra
Definition 1.2.1. A real (resp. complex) G-representation V = (V, ρ) , i.e. a homomorphism of
Lie groups ρ : G → O(V ) (resp. ρ : G → U(V )).

We sometimes just write G-representation or representation instead of “real or complex G-
representation” relying on context for what is meant.
Definition 1.2.2. For a G-representation V , the one-point compactification of V is denoted by SV .
The unit disc of the representation is

D(V ) := {v ∈ V | |v| ≤ 1}.

The unit sphere of the representation is
S(V ) := {v ∈ V | |v| = 1}.

For a G-representation V , the projective space P (V ) is the space of one-dimensional subspaces.
Compare tom Dieck [tD87, Chapter V, 2.8].
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Remark 1.2.3. For a G-representation V , D(V ), S(V ) and P (V ) are G-spaces and SV is a based
G-space. We can give SV the structure of a G-complex. If V is a finite dimensional representation,
SV can be given the structure of a finite G-complex.

Definition 1.2.4. For a G-representation V of G and a based G-space X we define the suspension

ΣV X := X ∧ SV

and the loop space
ΩV X := F (SV , X).

Remark 1.2.5. ΣV and ΩV can be extended to functors GT → GT and ΣV is left adjoint to ΩV .

Definition 1.2.6. A G-universe U is a countable direct sum of G-representations such that

1. U contains a trivial representation and

2. U contains each of its sub-representations infinitely often.

A G-universe is said to be complete if it contains every irreducible representation of G. Depending
on whether we take all real or all complexG-representations we obtain a real or a complexG-universe.

Remark 1.2.7. A real G-universe U can be written as
⊕

i∈I V
∞
i , where {Vi}i∈I is a set of irreducible

representations and V1 is R, the trivial representation. If G is finite, a complete G-universe is given
by V ∞, where V is the regular representation of G.

Definition 1.2.8. For a natural number n, we denote the representation Rn with trivial G-action
by n, sometimes viewed as a subspace of a given G-universe. If there is no possibility of confusion
we denote that representation also with n.

Definition 1.2.9. An indexing space in U is a finite dimensional G-subspace of a universe U .

Definition 1.2.10. A G-prespectrum E = (EV, σV,W ) indexed on a G-universe U is a family of
(based) G-spaces EV , one for every indexing space V in U , together with structure maps

σV,W : ΣW−V EV → EW

for V ⊂ W , such that

ΣZ−WΣW−V EV
ΣZ−WσV,W

//

∼=
��

ΣZ−WEV

σW,Z

��

ΣZ−V EV
σV,Z

// EZ

commutes and σV,V = id. Here W − V denotes the orthogonal complement of V in W .

Definition 1.2.11. An Ω-G-spectrum is a G-prespectrum such that the adjoints of the structure
maps,

σ̃V,W : EV → ΩW−V EW

are weak equivalences. A G-spectrum is a G-prespectrum such that the adjoints of the structure
maps,

σ̃V,W : EV → ΩW−V EW

are homeomorphisms.



8 Basics and Notation

Definition 1.2.12. A map f : (DV, ρV,W ) → (EV, σV,W ) of G-prespectra is a family {fV : DV →
EV } such that

ΣW−V DV
ρV,W

//

ΣW−V fV
��

DW

fW

��

ΣW−V EV
σV,W

// EW

commutes for all indexing spaces V ⊂ W . The resulting category of G-prespectra indexed on
a G-universe U is denoted by GPU or GP. Maps of Ω-G-spectra and G-spectra are maps of
their underlying G-prespectra and we obtain the categories Ω-GS U = Ω-GS of Ω-G-spectra and
GS U = GS of G-spectra.

For G = {e}, the trivial group, we can choose R∞ as complete G-universe and obtain {e}SR∞

the category of spectra, which will be denoted by S . Notice that every G-spectrum is an Ω-G-
spectrum and every Ω-G-spectrum is a G-prespectrum. In fact we have a forgetful functor:

l : GS → GP.

This functor has a left adjoint spectrification functor

L : GP → GS .

The adjunction can be constructed in the same way as non-equivariantly and is described in
[MPC96, Chapter XII] and also in [LMS86, Appendix, p. 475] and [EKMM07, p. 10].

Definition 1.2.13. Let E be a G-prespectrum and X be a G-space. The smash product E ∧X
is the G-prespectrum with spaces

(E ∧X)V := EV ∧X

for an indexing space V in a G-universe U and structure maps

σ ∧ 1 : ΣW−V (E ∧X)V = ΣW−V (EV ∧X) = (ΣW−V EV ) ∧X → EW ∧X

for indexing spaces V ⊂ W in U . For a G-spectrum F we define

F ∧X := L(lF ∧X).

The smash products X ∧ E and X ∧ F are defined analogously.

The definition of smash products allows to define a notion of homotopy and the category hGS U ,
whose morphisms are denoted by [−,−]G. A homotopy in GS U is a map E ∧ I+ → F , where I is
the unit interval with trivial G-action. This gives the homotopy category hGS U . Adjoining formal
inverses to weak equivalences gives the category h̄GS U .

For two G-spectra E and F , the set of homotopy classes [E,F ]G is given the structure of an
Abelian group in the usual way. (See for example [Swi75, Corollary 8.27, p. 142].)

Definition 1.2.14. Given a linear isometric isomorphism f : U → U ′ between two G-universes U
and U ′, the change of universe functor

f∗ : GS U ′ → GS U

is given by
(f∗E′)V = E′(f(V ))

and maps

σV,W : (f∗E′)(V ) =ΣW−V E′(f(V ))

∼= Σf(W )−f(V )E′(f(V ))
σf(V ),f(W )

// E′(f(W )) = (f∗E′)W.
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It is possible to define a left adjoint f∗ to f∗ even when f fails to be an isomorphism, (compare
[LMS86, Definition 1.1 and Proposition 1.2, p. 58]).

Given a G-universe U we can consider the set

D := {V ⊕W ⊂ U ⊕ U |V,W indexing spaces in U}.

Definition 1.2.15. For two G-prespectra E and F indexed on a G-universe U , the external smash
product E ∧ F is the G-prespectrum indexed on the G-universe U ⊕ U , induced by the following
G-prespectrum indexed on D:

(E ∧ F )(V ⊕W ) := EV ∧ FW

with structure maps

Σ(V ′⊕W ′)−(V⊕W )EV ∧ FW ∼= Σ(V ′−V )⊕(W ′−W )EV ∧ FW

∼= ΣV ′−V EV ∧ ΣW ′−WFW
σV,V ′∧σW,W ′

// EV ′ ∧ FW ′.

The external smash product together with the change of universe functor allows us to define
a smash product of G-spectra. Let U be a G-universe and f : U ⊕ U → U a linear isometric
isomorphism.

Definition 1.2.16. For two G-spectra E and F indexed on U , the smash product E ∧ F is

E ∧ F := f∗L(lE ∧ lF ).

For more details and to see why this definition does not depend on the choice of f in the category
h̄GS U , see [LMS86, p. 72 and Theorem 1.7, p. 61] and [MPC96, Chapter XII.3, p. 115].

Definition 1.2.17. For a family of G-(pre)spectra {Ei}i∈I the wedge product ∨i∈I Ei has spaces

(
∨
i∈I

Ei)V :=
∨
i∈I

(EiV )

and structure maps

σV,W : ΣW−V (
∨

i∈I EiV )
∼= //

∨
i∈I Σ

W−V EiV

∨
i∈I σi

V,W
//
∨

i∈I EiWi.

Definition 1.2.18. Given an indexing space in a G-universe U the evaluation functor Ω∞
V :

GS → GT is defined by setting
Ω∞

V E := EV

for a G-spectrum E and
Ω∞

V f := fV

on maps.

Definition 1.2.19. Given a G-space X and an indexing space V , the V th desuspension pre-
spectrum ({Σ−−V X}, σ−,−) has

(Σ−−V X)W :=

{
ΣW−V X for V ⊂ W

pt otherwise

as spaces and for W ⊂ Z the identification

σW,Z : ΣW−ZΣZ−V X
∼= // ΣW−V X
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as structure maps. Suspending maps as well gives a functor

GT → GP.

Combining this functor with the spectrification we get the shift desuspension functor

Σ∞
V − : GT → GS ,

such that Σ∞
V X is L({Σ−−V X}).

We give a few properties of the shift desuspension functor. (See [LMS86, p. 22 and p. 59].)
Remark 1.2.20. Let f : U → U ′ be a linear isometric isomorphism between two G-universes as above
and let V ⊂ U be an indexing space and X a G-space. There is a natural isomorphism

f∗(Σ
∞
V X) ∼= Σ∞

fV X.

Remark 1.2.21. For any indexing space V , the composition Ω∞
V ◦ Σ∞

V :

GT
Σ∞

V // GS
Ω∞

V // GT

is the identity functor.
Remark 1.2.22. The shift desuspension functor Σ∞

V is left adjoint to the evaluation functor Ω∞
V .

Remark 1.2.23. For spaces X and Y there is a natural isomorphism

Σ∞
V (X ∧ Y ) ∼= (Σ∞

V X) ∧ Y.

Remark 1.2.24. For a space X and isomorphic indexing spaces V ∼= V ′ in U there is a natural
isomorphism

Σ∞
V X ∼= Σ∞

V ′X.

Remark 1.2.25. For a space X and indexing spaces V ⊂ W in U there is a natural isomorphism

Σ∞
V X ∼= Σ∞

WΣW−V X.

Remark 1.2.26. For spaces X and Y and indexing spaces V and W with V ∩ W = {0} there is a
natural isomorphism

ΣV⊕W (X ∧ Y ) ∼= Σ∞
V X ∧ Σ∞

WY.

Lemma 1.2.27. For a prespectrum E there is a natural isomorphism

LE ∼= colimV Σ∞
V EV.

Here the colimit is taken over the maps

Σ∞
V EV

∼= // Σ∞
W (ΣW−V EV )

Σ∞
WσV,W

// Σ∞
WEW .

A proof can be found in [LMS86, p. 25].

Definition 1.2.28. Given a pair of indexing spaces V and W , the sphere G-spectrum is

SW	V := Σ∞
V SW .

Definition 1.2.29. For Σ∞
0 we also write Σ∞ and for SW	0 we also write SW = Σ∞

0 SW =
Σ∞SW , unless there is a possibility of confusing the space SW with the spectrum SW . Given a
G-(pre)spectrum E the W th suspension of E is

ΣWE := E ∧ SW .
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Lemma 1.2.30. Given a G-linear isomorphism

α : V ⊕W ′ → V ′ ⊕W

there is an isomorphism of G-spectra:

α′ : SW	V → SW ′	V ′
.

Proof. Define α′ as

Σ∞
V SW

Remark 1.2.25

∼= // Σ∞
V⊕W ′ΣW ′

SW
∼=

Remark 1.2.24
// Σ∞

W ′⊕V Σ
W ′

SW
∼=

Σ∞
α τ

// Σ∞
V ′⊕WΣWSW ′ ∼=

Remark 1.2.25
// Σ∞

V ′SW ′
,

where τ : ΣW ′
SW → ΣWSW ′ is the transposition isomorphism.

Definition 1.2.31. For G-spaces X and Y the stable homotopy classes of maps X → Y are

{X,Y }G := [Σ∞X,Σ∞Y ]G.

Definition 1.2.32. We write IO(G) or IO(G,U) for the category of indexing spaces indexed
on a G-universe U . The objects are the indexing spaces in a given G-universe U and the morphisms
between two indexing spaces are the linear isometric isomorphisms between them. Let two such
morphisms V → W be called homotopic if their associated morphisms SV → SW of G-spaces are
stably homotopic. The resulting homotopy category is denoted by hIO(G).

Definition 1.2.33. An equivariant ring spectrum is an object E in h̄GS together with maps
µ : E ∧ E → E and ν : S0 → E such that the following diagrams commute:

E ∧ E ∧ E
1∧µ

//

µ∧1

��

E ∧ E

µ

��

E ∧ E
µ

// E

and
S0 ∧ E

ν∧1 //

∼=
%%KKKKKKKKKK E ∧ E

µ

��

E ∧ S01∧νoo

∼=
yyssssssssss

E

.

It is called a commutative ring spectrum if

E ∧ E
τ
∼=

//

µ
##FF

FF
FF

FF
F E ∧ E

µ
{{xx

xx
xx

xx
x

E

commutes. Here τ denotes the transposition isomorphism.

For more details see [MPC96, Chapter III.5, p. 140] and [Swi75, Chapter 13, p. 269].

Equivariant (co)homology theories
A simple way of defining an equivariant homology theory is to take the non-equivariant axiomatic
approach, while replacing T by GT . This is what tom Dieck calls unstable equivariant homology
theory (compare [tD87, II,(6.7)]).

Definition 1.2.34. A Z-graded equivariant homology theory with respect to the group G is a
homology theory in the sense of [May99, Chapter 14.4, p. 108], replacing the homotopy category of
based spaces by the homotopy category of based G-spaces.
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Definition 1.2.35. A Z-graded equivariant cohomology theory with respect to the group G is a
cohomology theory in the sense of [May99, Chapter 19.2, p. 144], replacing the homotopy category
of based spaces by the homotopy category of based G-spaces.

Compare also Bredon’s notion of equivariant (co)homology [Bre67].
The following definitions are from [MPC96, Chapter XIII, p. 130], although only the cohomolo-

gical part is spelled out there.

Definition 1.2.36. A homology theory graded over a G-universe U is a functor

EG
−(−) : hIO(G)op × (hGT ) −→ Ab

together with suspension isomorphisms

σW : EG
V (X) −→ EG

V⊕W (ΣWX),

which are natural in V and in X, such that the following axioms are satisfied.

1. For each indexing space V , the functor EG
V sends wedges to sums and is exact on cofiber

sequences.

2. For a map α : W −→ W ′ between indexing spaces, the following diagram commutes:

EG
V (X)

σW ′

��

σW
// EG

V⊕W (ΣWX)

EG
id⊕ id(Σ

α id)

��

EG
V⊕W ′(ΣW ′

X)
EG

id⊕α(id)
// EG

V⊕W (ΣW ′
X).

3. σ0 = id and the suspension isomorphisms are transitive in the following sense:

EG
V (X)

σW⊕W ′
''NNNNNNNNNNN

σW
// EG

V⊕W (ΣWX)

σW ′
vvmmmmmmmmmmmm

EG
V⊕W⊕W ′(ΣW⊕W ′

X).

Definition 1.2.37 (compare [Cos96, Definition 1.1]). A cohomology theory graded over a
G-universe U is a functor

E−
G(−) : hIO(G)× hGT op −→ Ab

together with suspension isomorphisms

σW : EV
G (X) −→ EV⊕W

G (ΣWX),

which are natural in V and in X, such that the following axioms are satisfied.

1. For each indexing space V , the functor EV
G sends wedges to products and is exact on cofiber

sequences.

2. For a map α : W −→ W ′ between indexing spaces, the following diagram commutes:

EV
G (X)

σW ′

��

σW
// EV⊕W

G (ΣWX)

Eid⊕α
G (id)

��

EV⊕W ′

G (ΣW ′
X)

Eid⊕ id
G (Σα id)

// EV⊕W ′

G (ΣWX).
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3. σ0 = id and the suspension isomorphisms are transitive in the following sense:

EV
G (X)

σW⊕W ′
''NNNNNNNNNNN

σW
// EV⊕W

G (ΣWX)

σW ′
vvmmmmmmmmmmmmm

EV⊕W⊕W ′

G (ΣW⊕W ′
X).

Definition 1.2.38. Analogous to definition 1.2.36 we define a homology theory indexed on a
G-universe U on the category of G-spectra, replacing hGT by hGS . Analogous to definition
1.2.37 we define a cohomology theory indexed on a G-universe U on the category of G-
spectra, replacing hGT by hGS .

Remark 1.2.39. Given a homology theory graded over a G-universe U and an indexing space V with
trivial fixed set, it follows from the first axiom of Definition 1.2.36 that EG

V+n together with the
suspension isomorphisms σ1 gives a Z-graded equivariant homology theory. Analogously we obtain
an equivariant Z-graded cohomology theory from a cohomology theory graded over U .

Lemma 1.2.40. An Ω-G-spectrum E indexed on a G-universe U defines a functor

hIO(G,U) → hGT

that is the evaluation EV on objects V in hIO(G,U).

Proof. See [MPC96, Chapter XIII, Lemma 2, p. 132]

Proposition 1.2.41. An Ω-G-spectrum E indexed on a G-universe U represents a homology theory
graded over U on G-spaces.

Proof. For an indexing space V ⊂ U , define

EG
V (X) := [SV , E ∧X]G.

For a map of G-spaces φ : X → Y we obtain a map of Ω-G-spectra

1 ∧ φ : E ∧X → E ∧ Y

and
EG

V (f) : [SV , E ∧X]G
1∧φ◦−

// [SV , E ∧ Y ]G

is defined by post-composing with 1 ∧ φ. For a map α : V → W in hIO(G) we obtain a map

Sα : SV → SW

and
EG

α (X) : [SW , E ∧X]G
−◦Sα

// [SV , E ∧ Y ]G

is defined by pre-composing with Sα.
We claim this gives a functor

EG
−(−) : (hIO(G))op × h̄GI → Ab

satisfying the axioms of a homology theory (Definition 1.2.36). Axiom 1 is satisfied just as in the
non-equivariant case; see [Swi75, 8.33] for example. The commutativity of the diagrams of Axioms
2 and 3 follows immediately.

Proposition 1.2.42. An Ω-G-spectrum E indexed on a G-universe U represents a cohomology
theory graded over U on G-spaces.
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Proof. For an indexing space V ⊂ U , define

EV
G (X) := [X,EV ]G.

For a map of G-spaces φ : X → Y , define

EV
G (φ) := [φ,EV ]G : [Y,EV ]G → [X,EV ]G,

where [φ,EV ]G denotes composing with φ. Similarly for a map α : V → W , define

Eα
G(X) := [X,Eα]G : [X,EV ]G → [X,EW ]G,

where [X,Eα]G denotes composing with Eα, the map obtained when we view E as evaluation
functor (see 1.2.40). We claim that this gives a functor

E−
G(−) : hIO(G)× hGT op −→ Ab,

satisfying the axioms of a cohomology theory (definition 1.2.37). Details can be found in [MPC96,
Chapter XIII.2, p. 132].

Proposition 1.2.43. A G-spectrum E indexed on a G-universe U represents a homology theory on
G-spectra graded over U .

Proof. The proof is formally identical to the proof of Proposition 1.2.41.

Proposition 1.2.44. A G-spectrum E indexed on a G-universe U represents a cohomology theory
on G-spectra graded over U .

Proof. The proof is formally identical to the proof of Proposition 1.2.42.

Notice that for a G-spectrum E and our associated (co)homology theories we have

EV
G (X) = EV

G (Σ∞X)

and
EG

V (X) = EG
V (Σ∞X).

For an equivariant ring spectrum we can define an external product on the associated equivariant
homology theory indexed on U :

EG
V (X)⊗ EG

W (Y ) → EG
V⊕W (X ∧ Y ).

We give a sketch of how it is defined. A complete treatment, also including other products on
(co)homology can be found in [MPC96, p. 139f] and [LMS86, III §3].

We have a map
E ∧X ∧ E ∧ Y

id∧τ∧id // E ∧ E ∧X ∧ Y

where τ denotes the transposition and we have the structure map of the ring spectrum E

µ : E ∧ E → E.

Given two elements
f ∈ EG

V (X) and g ∈ EG
W (Y )

represented by
f ∈ [SV , E ∧X]G and g ∈ [SW , E ∧ Y ]G,

we assign a map

SW⊕V ∼= SV ∧ SW
f∧g

// E ∧X ∧ E ∧ Y
id∧τ∧id // E ∧ E ∧X ∧ Y

µ∧id
// E ∧X ∧ Y.

This assignment gives rise to a multiplication

EG
∗ (X)⊗ EG

∗ (Y ) → EG
∗ (X ∧ Y ).

Taking X = S0 we see that EG
∗ (Y ) carries an EG

∗ -module structure.
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Remark 1.2.45. Converse statements to the preceding propositions can be found in [MPC96, Chapter
XIII, Section 3]. Brown’s representation theorem applies and we will quote a corollary without
quoting the proof.

Proposition 1.2.46 (see [MPC96, Chapter XIII, Corollary 3.2]). A cohomology theory E∗
G indexed

over a G-universe U is represented by an Ω-G-prespectrum indexed on U .

The real representation ring
Definition 1.2.47. Given a real G-universe U the real representation group

RO(G;U)

is the set of equivalence classes of formal differences V 	W , where V and W are indexing spaces in
U and V 	W is equivalent to V ′ 	W ′ if there is a G-linear isometric isomorphism

α : V ⊕W ′ → V ′ ⊕W.

The virtual dimension of an element Z = V 	W is |Z| := |V | − |W |.

Remark 1.2.48. The group structure on RO(G;U) is given by taking the direct sum on representa-
tives. If U is a complete G-universe or, more generally, if the tensor product of two given indexing
spaces is isomorphic to another indexing space, then RO(G;U) can be given a commutative ring
structure by taking the tensor product on representatives.

Definition 1.2.49. For a group G and a complete real G-universe U we choose a set J of real
G-representations containing exactly one representative of every isomorphism class of an irreducible
non-trivial representation. The free Abelian group ZJ can be considered to be an additive subgroup
of RO(G). We set

AO∗(G) := Z[ZJ ].

This is a graded ring; the grading is induced by the virtual dimension of elements in ZJ ⊂ RO(G).

Remark 1.2.50. We have an isomorphism

AO∗(G) ∼= Z[eV , e−1
V ]V ∈J ,

for indeterminates eV and e−1
V with the obvious relations, which is induced by

ZJ 3
∑
V ∈J

αV V 7→
∏
V ∈J

e−αV

V .

The eV ’s are not to be confused with the Euler classes of Definition 1.3.22. Later in Proposition
3.1.10 we will explain why we choose to name them eV and e−1

V .

Definition 1.2.51. Given a cohomology theory E (graded on a G-universe U) and a pair of indexing
spaces V and W we define

EV	W
G (X) := EV

G (ΣWX).

Given a G-linear isometric isomorphism

α : V ⊕W ′ → V ′ ⊕W

we obtain an isomorphism
EV	W

G (X) → EV ′	W ′

G (X)

in the following way:

EV
G (ΣWX)

σW ′
// EV⊕W ′

G (ΣW⊕W ′
X)

Eα
G(Στ id)

// EV ′⊕W
G (ΣW ′⊕WX)

(σW )−1

// EV ′

G (ΣW ′
X).
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Here τ : W ′ ⊕W → W ⊕W ′, which appears in the middle map, denotes the transposition isomor-
phism.

We choose a system of representatives of RO(G;U) and also a system of unique isomorphisms
within each isomorphism class and define

Ea
G(X) := EV	W

G (X)

for an element a in RO(G;U), which is represented by V 	 W. This is then well-defined up to
unique isomorphism. Notice that in the above definitions the cohomology theories can be viewed as
cohomology theories on G-spaces or on G-spectra.

We give an analogous definition for a homology theory:

Definition 1.2.52. Given a homology theory E (graded on a G-universe U) and a pair of indexing
spaces V and W we define

EG
V	W (X) = EG

V (ΣWX).

Given a G-linear isometric isomorphism α : V ′ ⊕W → V ⊕W ′ we obtain an isomorphism

EG
V	W (X) → EV ′	W ′(X)

in the following way:

EG
V (ΣWX)

σW ′
// EG

V⊕W ′(ΣW⊕W ′
X)

EG
α (Στ id)

// EV ′⊕W
G (ΣW ′⊕WX)

(σW )−1

// EV ′

G (ΣW ′
X).

Here τ : W ⊕W ′ → W ′ ⊕W , which appears in the middle map, denotes the transposition isomor-
phism. As in the cohomological case we choose a set of representatives of RO(G;U) and a system
of unique isomorphisms and define

EG
a (X) := EV	W (X)

for an element a in RO(G;U) represented by V 	W . These definitions are meant for (co)homology
theories on G-spectra as well as on G-spaces. Similar to the cohomological case we get isomor-
phisms for equivalent formal differences of representations and we adopt the analogous convention
we established for cohomology.

Notice that for a cohomology theory on G-spectra represented by a G-spectrum E we have

EV	W
G (D) = EV

G (ΣWD) = [Σ∞
V ΣWD,E]G = [SW	V ∧D,E]G

and for a homology theory on G-spectra represented by a G-spectrum E we have

EG
V	W (D) = EG

V (ΣWD) by 1.2.52
= [Σ∞SV ,ΣWE ∧D]G by 1.2.41
∼= [Σ∞

WΣWSV ,ΣWE ∧D]G by 1.2.25
= [ΣWΣ∞

WSV ,ΣWE ∧D]G by 1.2.23
= [Σ∞

WSV , E ∧D]G by supsension isomorphism
= [SV	W , E ∧D]G. by 1.2.28

The complex representation ring
Definition 1.2.53. Given a complex G-universe U the complex representation group R(G;U)
or R(G) is the set of equivalence classes of formal differences V 	W, where V and W are indexing
spaces in U and V 	W is equivalent to V ′ 	W ′ if there is a G-linear isometric isomorphism

α : V ⊕W ′ → V ′ ⊕W.
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As in the real case we have a group structure on R(G). We follow [Han05, p. 683] and [tD70, §2].
Definition 1.2.54. Let J be a system of representatives for the isomorphism classes of non-trivial
irreducible complex representations of G.

Notice that ZJ , the free Abelian group on J , can be viewed as an additive subgroup of R(G).
Definition 1.2.55. Given a group G and J as above we set

A∗(G) := Z[ZJ ].

This is a graded ring:

A∗(G) =
∞⊕

n=−∞
An(G)

with

An(G) :=

{∑
i∈Z

βi(
∑

V ∈ZJ
αi
V V ) ∈ A∗(G)

∣∣∣∣∣βi, α
i
V ∈ Z,

∑
αi
V |V | = n

}
,

where |V | denotes the real dimension of V. Analogous to Remark 1.2.50 we have an isomorphism
A∗(G) ∼= Z[eV , e−1

V ]V ∈J

and again eV and e−1
V are not the Euler classes (see Definition 1.3.22), but just indeterminates.

Geometric fixed point spectra
Let U be a G-universe and let {Kn}n≥0 be a sequence of indexing spaces in U with Kn ⊂ Kn+1, such
that every irreducible representation of G is contained arbitrarily often in KN for large N and such
that Kn+1 − Kn contains exactly one copy of the trivial representation, i.e. |(Kn+1 − Kn)

G| = 1.
For finite G we can choose Kn as the n-fold product of the regular representation.
Definition 1.2.56. Let E be a G-prespectrum indexed on a G-universe U and let {Kn}n≥0 be
a sequence of indexing spaces as above. The geometric fixed point spectrum ΦGE is the
spectrification of the (non-equivariant) prespectrum φGE defined as follows: For n ∈ N

(φGE)n := (EKn)
G

and the adjoint of the structure map (φGE)n → Ω(φGE)n+1 is defined as
(EKn)

G → (ΩKn+1−KnEKn+1)
G

→ Ω(Kn+1−Kn)
G

(EKn+1)
G = Ω(EKn+1)

G,

where the first map is the restriction of the structure map
σKn,Kn+1 : (EKn) → (ΩKn+1−KnEKn+1)

of E and the second map is the restriction to fixed sets of the loop space.
The following properties can be found in [MPC96, Chapter XVI.3] (also compare [LMS86, Chap-

ter II §9 and Chapter I §3]).
Remark 1.2.57. The spectrum ΦGE does not depend on the choice of {Kn}n≥0.

Taking the geometric fixed point spectrum can be extended to a functor
ΦG : GS U → S .

This functor has the following properties.
Remark 1.2.58. For a G-space X we have

Σ∞(XG) ∼= ΦG(Σ∞X).

Remark 1.2.59. Taking the geometric fixed point spectrum is compatible with the smash product.
For G-spectra E and E′ we have

ΦG(E) ∧ ΦG(E′) ∼= ΦG(E ∧ E′).
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1.3 Equivariant homotopic (co)bordism and Thom spectra
Definition 1.3.1. A G-bundle is a bundle (E,B, π) such that E and B are G-spaces and π : E → B
is equivariant.

See [tD87, Section I.8] for details.

Definition 1.3.2. A real (resp. complex) G-vector bundle is a real (resp. complex) vector bundle
p : E → B such that E and B are G-spaces and p is equivariant and for each b ∈ B, g ∈ G, the left
translation

Lg : Eb → Egb

x 7→ gx

is linear. A map of G-vector bundles is an equivariant map of the underlying vector bundles.

See [tD87, Chapter 9] and [MPC96, Chapter XVI.1] for details.

Definition 1.3.3. The category of G-vector bundles and maps between them is denoted by GV .

Definition 1.3.4. Given a G-vector bundle p : E → B we apply one-point compactification to each
fiber of p and obtain a new G-bundle SE with fibers based spheres Sn (with base points ∞). The
base points give a section B → SE and we define the Thom space of p as the quotient

T (p) := SE/B.

Remark 1.3.5. The above construction of taking Thom spaces is functorial, i.e. can be extended to
maps of vector bundles to give a functor

T : GV → GT

from the category of G-vector bundles to the category of G-spaces.

The real equivariant Thom spectrum
Classifying G-vector bundles is analogous to the non-equivariant case. We give definitions to fix
notation and also define Thom spectra. More details can be found in [LMS86, Chapter X]. Let V
be an indexing space in a complete real G-universe U with |V | = n.

Definition 1.3.6. Define the classifying space BO(|V |, V ⊕ U) to be the set of real n-planes in
V ⊕ U . If the universe is clear from context, the notation BOG(n) is also used for BO(n, V ⊕ U).

Remark 1.3.7. The set BO(|V |, V ⊕U) can be topologized (in the same way as the grassmannians)
and we can give it the structure of a G-space by using the G-action on V ⊕ U to send a n-plane in
V ⊕ U to another n-plane in V ⊕ U and take V ⊂ V ⊕ U as a base point.

Definition 1.3.8. The tautological bundle EO(|V |, V ⊕ U) over BO(|V |, V ⊕ U) is the set

EO(|V |, V ⊕ U) := {(p,W ) ∈ (V ⊕ U)×BO(|V |, V ⊕ U) | p ∈ W},

topologized as a subset of (V ⊕ U) × BO(|V |, V ⊕ U) with the restricted G-action and (0, V ) as a
base point together with the projection on the second variable:

π(V ) : EO(|V |, V ⊕ U) → BO(|V |, V ⊕ U)
(p,W ) 7→ W.

If the universe is clear from context, the notation EOG(V ) is also used for the tautological bundle.

Remark 1.3.9. The real tautological bundle is a real n-plane G-vector bundle.
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Definition 1.3.10. The real equivariant Thom prespectrum TOG has as V th space TOG(V ),
the Thom space of π(V ), the tautological bundle over BO(|V |, V ⊕ U). For V ⊂ W the pullback of
π(W ) under the inclusion

BO(|V |, V ⊕ U) → BO(|W |,W ⊕ U)
is the direct sum of the trivial G-vector bundle with fiber W − V and π(V ), so that its Thom space
is (canonically homeomorphic to) ΣW−V TOG(V ). Passing to Thom spaces then gives a map

σV,W : ΣW−V TOG(V ) → TOG(W ),

which we define to be the structure maps of TOG. We sometimes write TOG instead of TOG.

Definition 1.3.11. The real equivariant Thom spectrum MOG is the spectrification of the real
equivariant Thom prespectrum:

MOG := LTOG.

We sometimes write MOG instead of MOG.

Definition 1.3.12. The homology theory associated to the real equivariant Thom spectrum MOG

is called real equivariant homotopic bordism.

Definition 1.3.13. The cohomology theory associated to the real equivariant Thom spectrumMOG

is called real equivariant homotopic cobordism.

Notice that with Lemma 1.2.27 we have

MOG
∼= colimW Σ∞

WTOGW.

Lemma 1.3.14. We have the following description of the coefficients of real equivariant homotopic
bordism in positive degrees:

MOG
V = MOG

V (S
0) ∼= colimW [SV⊕W , TOG(W )]G.

Proof.

MOG
V (S

0) ∼= [SV	0, LTOG ∧ S0] ∼= [Σ∞
0 SV , colimW Σ∞

WTOG(W )]G
∼= colimW [Σ∞

0 SV ,Σ∞
WTOG(W )]G

∼= colimW [Σ∞
WΣWSV ,Σ∞

WTOG(W )]G
∼= colimW [SW⊕V ,Ω∞

WΣ∞
WTOG(W )]G

∼= colimW [SV⊕W , TOG(W )]G.

Lemma 1.3.15. We have the following description of the coefficients of real equivariant homotopical
bordism in negative degrees:

MOG
−V = MOG

−V (S
0) ∼= colimW [SW , TOG(V ⊕W )]G.

Proof.

MOG
−V (S

0) ∼= [S0	V ∧ S0, LTOG]G
∼= [Σ∞

V S0, colimW Σ∞
WTOG(W )]G

∼= colimW [Σ∞
V S0,Σ∞

WTOG(W )]G
∼= colimV⊂W [Σ∞

V S0,Σ∞
WTOG(W )]G

∼= colimZ=V⊕W [Σ∞
V S0,Σ∞

Z TOG(Z)]G
∼= colimZ=V⊕W [Σ∞

Z ΣZ−V S0,Σ∞
Z TOG(Z)]G

∼= colimZ=V⊕W [SW , TOG(V ⊕W )]G.
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Next we want to describe how a ring structure on MOG can be defined. Classifying the product
of tautological bundles, we obtain a map

pV,W : BO(|V |, V ⊕ U)×BO(|W |,W ⊕ U) → BO(|V |+ |W |, V ⊕W ⊕ U)

such that for the pullback of the tautological bundle we have

p∗V,W,(EO(|V |+ |W |, V ⊕W ⊕ U)) ∼= EO(|V |, V ⊕ U)× EO(|W |,W ⊕ U).

Then
EO(|V |, V ⊕ U)× EO(|W |,W ⊕ U)

π(V )×π(W )

��

p̃V,W
// EO(|V |+ |W |, V ⊕W ⊕ U)

π(V⊕W )

��

BO(|V |, V ⊕ U)×BO(|W |,W ⊕ U)
pV,W

// BO(|V |+ |W |, V ⊕W ⊕ U)

commutes and passing to Thom spaces gives rise to a map

TOG(V ) ∧ TOG(W ) → TOG(V ⊕W ).

Remark 1.3.16. The above construction defines a ring spectrum structure on MOG:

µ : MOG ∧MOG → MOG.

Non-equivariantly we will use the following H-space, which is defined in a similar way.

Definition 1.3.17. For n ∈ N let BO(n) be the set of n-planes in R∞ topologized in the usual way
(see for example [May99, p. 184]).

The space BO(n) together with the universal bundle ξn : En → BO(n) is a classifying space for
real n-dimensional vector bundles. We have a map

in : BO(n) → BO(n+ 1),

which is characterized up to homotopy by

i∗n(ξn+1) ∼= ξn ⊕ ε,

where ε is the trivial one-dimensional bundle. We set

BO := colimn BO(n).

Remark 1.3.18. The space BO has an H-space structure

H : BO ×BO → BO,

which is induced by maps

pm,n, : BO(m)×BO(n) → BO(m+ n),

characterized up to homotopy by

p∗m+n(ξm+n) ∼= ξm ⊕ ξn.

We give BO a base point ∗ such that H(∗, ∗) = ∗.
Compare [tD70, §2] for the complex analogue BU .
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Periodicity
Remark 1.3.19. The definition of the Thom space TOG(V ) only depends on the dimension of V .
This can be seen from the definition of the Thom prespectrum (Definition 1.3.10): already the
isomorphism class of EOG(V ) depends only on the dimension of V , see Definitions 1.3.6 and 1.3.8.

Lemma 1.3.20. For every indexing space V , we have an equivalence of G-spectra

ΣV MOG ' Σ|V |MOG

and an equivalence
ΣV−|V |MOG ' MOG.

Proof. A proof can be found in [MPC96, Chapter XV.2, p. 157]. The equivalence is constructed as
follows. We have a map SV → TOG(|V |), which comes from the classifying map of V , regarding V
as a bundle V → ∗ over a point. Adjoint to this map, we get a map of G-spectra

Σ∞
n SV → MOG

and this gives the desired map

Σ∞
n SV ∧MOG

// MOG ∧MOG
µ

// MOG.

Lemma 1.3.21. For every space X and every pair of indexing spaces V and W there is an isomor-
phism

MOG
V	W (X) ∼= MOG

|V |−|W |(X).

Proof.

MOG
V	W (X) ∼= MOG

V (Σ
WX)

∼= MOG
V (Σ

|W |X)

∼= colimZ [S
Z , TOG(V ⊕ Z) ∧ Σ|W |X]G

∼= colimZ [S
Z , TOG(|V | ⊕ Z) ∧ Σ|W |X]G

∼= MOG
|V |(Σ

|W |X)

Definition 1.3.22. For an indexing space V , the inclusion of the base point (twice)

φ : 0 → V → BO(|V |, V ⊕ U)

gives a map
φ : S0 → SV → TOG(V ),

by passing to Thom spaces. The Euler class eV ∈ MOG
−V is the image of the homotopy class of φ

in the colimit MOG
−V

∼= colimW [SW , TO(V ⊕W )]G.
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The complex equivariant Thom spectrum
The definition of the complex equivariant Thom spectrum parallels the real case. Let V be an
indexing space in a complete complex G-universe U with |V | = n.

Definition 1.3.23. Define BU(|V |, V ⊕ U) to be the set of complex n-planes in V ⊕ U .

Remark 1.3.24. The set BU(|V |, V ⊕U) can be topologized (in the same way as the grassmannians)
and we can give it the structure of a G-space by using the G-action on V ⊕U to send an n-plane in
V ⊕ U to another n-plane in V ⊕ U and take V ⊂ V ⊕ U as a base point.

Definition 1.3.25. The tautological bundle EU(|V |, V ⊕ U) over BU(|V |, V ⊕ U) is the set

EU(|V |, V ⊕ U) := {(p,W ) ∈ (V ⊕ U)×BU(|V |, V ⊕ U) | p ∈ W},

topologized as subset of (V ⊕ U) × BU(|V |, V ⊕ U) with restricted G-action and (0, V ) as a base
point together with the projection on the second variable:

π(V ) : EU(|V |, V ⊕ U) → BU(|V |, V ⊕ U)
(p,W ) 7→ W.

Remark 1.3.26. The complex tautological bundle is a complex n-plane G-vector bundle.

Definition 1.3.27. The complex equivariant Thom prespectrum TUG has as V th space the
Thom space of π(V ), the tautological bundle over BU(|V |, V ⊕ U). For V ⊂ W the pullback of
π(W ) under the inclusion

BU(|V |, V ⊕ U) → BU(|W |,W ⊕ U)

is the direct sum of the trivial G-vector bundle with fiber W − V and π(V ), so that its Thom space
is (canonically homeomorphic to) ΣW−V TUG(V ). The map induces an inclusion

σV,W : ΣW−V TUG(V ) → TUG(W ),

which we define to be the structure maps of TUG. We sometimes write TUG instead of TUG.

Definition 1.3.28. The complex equivariant Thom spectrum MUG is the spectrification of the
complex equivariant Thom prespectrum:

MUG := LTUG.

We sometimes write MUG instead of MUG.

Definition 1.3.29. The homology theory associated to the complex equivariant Thom spectrum
MUG is called complex equivariant homotopic bordism.

Definition 1.3.30. The cohomology theory associated to the complex equivariant Thom spectrum
MUG is called complex equivariant homotopic cobordism.

Remark 1.3.31 (compare [Han05, Section 2]). The homology theory MUG
∗ of Definition 1.3.29 spe-

cializes to a Z-graded homology theory that can be redefined as follows. For a G-CW -complex X
set

MUG
2k(X) := colimW [SW , TUG

|W |−k ∧X]G,

where the colimit is taken over complex representations on a complete G-universe. For odd degrees
we set

MUG
2k−1(X) := MUG

2k(S
1 ∧X),

where S1 carries the trivial G-action.
From now on we will exclusively mean the Z-graded homology theory just defined when we talk

about MUG
∗ (−).
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1.4 Equivariant geometric (co)bordism

Real equivariant geometric (co)bordism
Definition 1.4.1. A n-G-manifold is an n-manifold M together with a smooth G-action: G×M →
M . If there is no ambiguity about the group or the dimension we will sometimes write manifold
instead of n-G-manifold.

In the following definitions, we only consider compact manifolds.

Definition 1.4.2. Two closed n-G-manifolds M1 and M2 are cobordant if there is an (n+ 1)-G-
manifold W such that ∂W is equivariantly diffeomorphic to M1 qM2.

Remark 1.4.3. “Cobordant” gives an equivalence relation on G-manifolds.

Definition 1.4.4. By NG
n we denote the set of cobordism classes of n-G-manifolds. If M is a

manifold, the element it represents in NG
n is denoted by [M ].

Remark 1.4.5. With addition induced by taking the disjoint union of representatives, NG
n is an

Abelian group. Since for any manifold M ,

[M qM ] = 0,

NG
n is a Z/2 vector space.

Definition 1.4.6. We set
NG

∗ :=

∞⊕
i=0

NG
i .

Remark 1.4.7. With multiplication induced by the product of representatives, NG
∗ is a graded Z/2

algebra.
Remark 1.4.8. For the trivial group {e} viewed as 0-dimensional Lie group we can identify N

{e}
∗

with N∗, the (non-equivariant) non-oriented real cobordism ring.

Definition 1.4.9. A singular G-manifold over a pair of G-spaces (X,A) is a G-manifold M
together with a G-map:

f : (M,∂M) → (X,A).

Definition 1.4.10. Two singular n-G-manifolds, (M1, f1) and (M2, f2), over (X,A) are bordant
if there is an (n + 1)-G-manifold W with two codimension-1 G-submanifolds ∂0W and ∂1W and a
G-map

g : (W,∂1W ) → (X,A)

such that ∂W is G-diffeomorphic to ∂0W ∪∂1W , ∂0W is G-diffeomorphic to M1qM2 with g|∂0W =
f1 q f2 and ∂∂0W = ∂0W ∩ ∂1W = ∂∂1W .

Remark 1.4.11. “Bordant” gives an equivalence relation on singular manifolds over (X,A).

Definition 1.4.12. By NG
n (X,A) we denote the set of bordism classes of n-G-manifolds over a pair

of spaces (X,A). For the pair (X,∅) we abbreviate

NG
n (X) := NG

n (X,∅).

Remark 1.4.13. With respect to the disjoint union of manifolds and maps of representatives, the set
NG

n (X,A) is an Abelian group, called the equivariant bordism group.

Definition 1.4.14. We set
NG

∗ (X,A) :=
∞⊕
i=0

NG
i (X,A).
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Remark 1.4.15. With multiplication induced by taking product on representatives (a closed manifold
with a singular manifold), NG

∗ (X,A) is a graded module over NG
∗ .

Definition 1.4.16. For a G-map φ : (X1, A1) → (X2, A2) we define

φ∗ : NG
∗ (X1, A1) → NG

∗ (X2, A2)

by φ∗(M,f) := (M,φ ◦ f).

Remark 1.4.17. For a G-map φ : (X1, A1) → (X2, A2), φ∗ is a well-defined homomorphism of
NG

∗ -modules of degree 0.

Definition 1.4.18. We define a map

∂ : NG
∗ (X,A) → NG

∗ (A)

by ∂(M,f) := (∂M, f|∂M ).

Remark 1.4.19. The map ∂ is a well-defined homomorphism of NG
∗ -modules of degree −1.

Lemma 1.4.20. Real equivariant bordism is a Z-graded equivariant homology theory satisfying the
dimension axiom NG

∗ (pt) = NG
∗ .

Proof. This is the unoriented equivariant analogue of [CF64, Theorem 5.1]. We will demonstrate
exactness to give an idea how these kinds of proofs work.

For a pair of G-space (X,A) the sequence

· · · // NG
n (A)

i∗ // NG
n (X)

j∗ // NG
n (X,A)

∂ // NG
n−1(A)

// · · ·

is exact, with i the inclusion A → X and j the inclusion (X,∅) → (X,A).
At NG

n (X) exactness is immediate, since a bordism class of a singular G-manifold over (X,A) is
in the kernel of j∗ if and only if it is cobordant to a class represented by a singular G-manifold with
image in A, that is, it is in the image of i∗.

At NG
n (X,A) we have ∂j∗ = 0, since ∂M = ∅ for all [M ] in the image of j∗. For an element

[M,f ] in the kernel of ∂ there is an n-G-manifold W with ∂W = ∂M and all of W maps to A. Gluing
together M and W along their boundary (and smoothing the corners) gives a singular G-manifold
over (X,∅) that is mapped to M by i∗.

At NG
n (A) exactness is also immediate; an element [M ] ∈ NG

n (A) is in the kernel of i∗ and in
the image of ∂ if and only if there is a singular (n + 1)-G-manifold (W,∂W ) → (X,A) such that
∂W = M .

Complex equivariant geometric (co)bordism
The complex analogue to NG

∗ is defined using the notion of stable almost complex G-manifold. For
this concept we refer to Hanke [Han05, Definition 1]. In that paper a comparison is made between
the different notions of stable almost complex G-structures, including the concept of normally almost
complex G-structures and tangentially almost complex G-structures.

Definition 1.4.21. Let X be a G-space. By ΩG
n (X) we denote the set of bordism classes of singular

stable almost complex G-manifolds over X.

The complex analogue of Lemma 1.4.20 reads as follows.

Lemma 1.4.22. Complex equivariant bordism ΩG
∗ (−) is a Z-graded equivariant homology theory

satisfying the dimension axiom
ΩG

∗ (pt) = ΩG
∗ .
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1.5 The Pontryagin–Thom construction
Another description of the coefficients for real equivariant homotopical bordism is easily derived
from Lemma 1.3.14.
Remark 1.5.1. For a nonnegative integer k the coefficients of Z-graded real equivariant homotopical
bordism are given by

MOG
k := colimW⊃k[S

W , TOG(W − k)]G

with maps as in Lemma 1.3.14.
We can restrict MOG

∗ to a Z-graded equivariant homology theory (compare Remark 1.2.39) and
will use this notion and notation of MOG

∗ from now on.

Definition 1.5.2. For every k ∈ N we construct a map:

PT : NG
k → MOG

k

as follows. Given an element [M ] in NG
k represented by an k-G-manifold M , choose an embedding of

M in a G-representation W. (The fact that this is possible is the Mostow-Palais theorem, see [Mos57]
and [Pal57]. A proof is also given by Wasserman [Was69, §1]). Let ν be the normal bundle of the
embedding. We can choose W such that ν is a G-bundle with fiber W − k, with total space E(ν)
homeomorphic to a tubular neighborhood N of the image of M in W ; compare [CF64, Chapter 3,
Section 22]. (Remember that W − k denotes the orthogonal complement of k in W .) We define a
map

t : SW → Tν

by sending N , viewed as a subset of SW , to E(ν) viewed as a subset of Tν via the homeomorphism
and send everything else, that is SW −N , to the base point of Tν. The normal bundle is classified
by a map

f : Eν → EO(|W | − k).

This gives a map
Tf : Tν → TOG(W − k)

and a homotopy class [Tf ◦ t] ∈ [SW , TOG(W − k)]G. The image of that class [Tf ◦ t] in the colimit

MOG
k = colimW⊃k[S

W , TOG(W − k)]G

is defined to be PT ([M ]).

It can be shown that this gives a well-defined group homomorphism. The following generalization
of the classical Pontryagin–Thom construction is due to tom Dieck, [tD71, §1]. Also compare [BH72,
§3].

Theorem 1.5.3. The above construction is well defined and a group homomorphism. It induces a
ring homomorphism and a homomorphism of N∗-modules

PT : NG
∗ → MOG

∗ .

Furthermore the construction induces a natural transformation of Z-graded equivariant homology
theories

PT : NG
∗ (−) → MOG

∗ (−).

Remark 1.5.4. We show in Section 1.8: Euler classes eV of non-trivial representations V (which
always exist if the group is non-trivial) are non-zero elements in MOG

−|V |. We deduce that PT is
not surjective for non-trivial G.

In the complex setting, a Pontryagin–Thom construction is obtained in a similar way. We get a
ring homomorphism

PT : ΩG
∗ → MUG

∗ .

A detailed description can be found in [Han05, p. 681f].
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1.6 A geometric description of MOG
∗

We can also consider stabilized geometric equivariant bordism.

Definition 1.6.1. Stabilized geometric bordism for a compact Lie group G is defined for every
integer k as

MO
G

k := colimV NG
k+|V |(D(V ), S(V ))

where the colimit is taken over all indexing spaces and the maps in the colimit are taking the product
with disc bundles. A bordism class represented by

f : (M,∂M) → (D(V ), S(V ))

maps to the bordism class of

f × idD(W ) : (M ×D(W ), ∂(M ×D(W )))

→ (D(V )×D(W ), ∂(D(V )×D(W ))) ∼= (D(V ⊕W ), S(V ⊕W )).

Similarly one defines MO
G

k (X,A) as a colimit over the groups

NG
k ((X,A)× (D(V ), S(V ))).

Bröcker and Hook showed that the Pontryagin–Thom construction stabilizes to give the following
natural transformation

Φ : MO
G

k (X,A) → MOG
k (X,A).

Moreover they prove the following.

Theorem 1.6.2 (see [BH72, Theorem 4.1] ). For a compact Lie group G there is an isomorphism

Φ : MO
G

∗ (X,A) → MOG
∗ (X,A).

Over a point this gives the isomorphism

colimV NG
k+|V |(D(V ), S(V )) ∼= MOG

k .

As in the unstabilized Pontryagin–Thom construction we have a product structure on MOG
∗ and

the product on NG
∗ induces a product on MO

G

∗ . Let V be a finite dimensional G-representation.
Define χ(V ) to be the element in MO

G

−|V | that is represented by the class of the map [∗ → D(V )] in

N−|V |+|V |(D(V ), S(V )) = N0(D(V ), S(V ))

that sends ∗ to 0 ∈ D(V ).
Remark 1.6.3. Chasing through the definitions of Bröcker and Hook’s stabilized Pontryagin–Thom
map we see that

Φ(χ(V )) = eV ∈ MOG
−|V |.

Lemma 1.6.4 (compare [Cos96, p. 157]). If V contains a trivial direct summand, then eV is trivial
in MOG

−|V |.

Proof. If V contains a trivial direct summand, then the map ∗ → D(V ) where ∗ maps to 0 ∈ D(V )
is homotopic to a map ∗ → S(V ) ⊂ D(V ) by going along a trivial direct summand of V . Hence
χ(V ) is zero in N−|V |+|V | and so is eV = Φ(χ(V )).

The converse of this Lemma is also true and we will give a demonstration after introducing the
notion of families of subgroups.
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1.7 Families of subgroups
Remember that we assume all subgroups to be closed.

Definition 1.7.1. A family of subgroups F of G is a set of subgroups of G that is closed under
conjugation (i.e. H ∈ F and K ⊂ G, K ∼ H implies K ∈ F) and closed under taking subgroups
(i.e. H ∈ F and K ⊂ H implies K ∈ F).

As examples we define special families of subgroups. Let G be a topological group.

Definition 1.7.2. The family of all subgroups in G is

A := {H ⊂ G |H closed subgroup in G}

and the family of all proper subgroups in G is

P := {H ⊂ G |H 6= G closed subgroup in G}.

Another example is the family of subgroups {{e}} consisting only of the trivial subgroup {e} ⊂ G.

Definition 1.7.3. Let F be a family of subgroups. A G-space X is called F-numerable if there
is an open covering U = {Uj | j ∈ J} of X by G-subspaces Uj such that

1. For all j ∈ J there is a Gj ∈ F and a G-map

fj : Uj → G/Gj .

2. There is a (locally finite) partition of unity (tj)j∈J subordinate to U by G-functions

tj : X → [0, 1].

Theorem 1.7.4 (see [tD72, Satz 1]). Given a family of subgroups F , the homotopy category of
F-numerable G-spaces has a terminal object EF .

This statement can be found in [MPC96, p. 45] and a proof can also be found in [tD87, Chapter
I, Theorem 6.6].
Remark 1.7.5. The space EF is called universal classifying space of G for the family F and is unique
up to G-homotopy. It enjoys the following properties: (EF)H is (non-equivariantly) contractible for
H ∈ F and it is empty for H /∈ F .

Remark 1.7.6. For F = {{e}}, the family consisting only of the trivial subgroup, E{{e}} can be
identified with EG, the total space of the universal principal G-bundle.
Remark 1.7.7. For F = A, the family of all subgroups, we can take the space consisting only of one
point, pt, as a model for EA.

For more on these classifying space (especially a G-CW -structure) see [Lüc05].

Definition 1.7.8. Let F be a family of subgroups. An F-space is G-space X such that all of the
isotropy groups of X are in F .

Definition 1.7.9. Let (F ,F ′) be a pair of families of subgroups with F ′ ⊂ F . Given an equivariant
homology theory EG

∗ we set

EG
∗ [F ,F ′](X) := EG

∗ (X × EF , X × EF ′)

to obtain the equivariant homology theory associated to (F ,F ′). If F ′ is empty we write
EG

∗ [F ](X) instead of EG
∗ [F ,∅](X).

Remark 1.7.10. By Remark 1.7.7, for the family A we have

EG
∗ [A](X) = EG

∗ (X).
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Remark 1.7.11. Let EG
∗ be an equivariant homology theory and F ′ ⊂ F families of subgroups. The

long exact sequence of the pair (X × EF , X × EF ′) gives a long exact sequence

· · · // EG
∗ [F ′](X) // EG

∗ [F ](X) // EG
∗ [F ,F ′](X) // EG

∗−1[F ′](X) // · · · .

There is also a notion of relative equivariant homology theory associated to (F ,F ′); see below a
more concrete example.

For real (or complex) geometric bordism there is a geometric interpretation of the homology
theory associated to a pair (F ,F ′) (compare [tD72, Satz 3]). The idea is that the families should
contain all isotropy groups of manifolds representing elements in geometric bordism.

Definition 1.7.12. Let F ′ ⊂ F be a pair of families of subgroups. An F-manifold is a G-manifold
M such that all isotropy groups of M are in F . An (F ,F ′)-manifold is an F-manifold such that
∂M is an F ′-manifold.

Now we can define a bordism between two (F ,F ′)-manifolds M1 and M2 to be an F-manifold
W with two codimension-1 submanifolds ∂0W and ∂1W such that

∂W = ∂0W ∪ ∂1W,

∂0W ∼= M1

∐
M2,

∂1W is an F ′-manifold and
∂∂0W = ∂0W ∩ ∂1W = ∂∂1W.

This can be identified with NG
∗ [F ,F ′] and considering singular (F ,F ′)-manifolds over X allows us

to redefine NG
∗ [F ,F ′](X) similarly.

For the definition of the relative geometric bordism groups with restricted isotropy

NG
∗ [F ,F ′](X,A)

we look at singular F-manifold (M,f) over (X,A) together with two codimension 1 submanifolds
∂FM and ∂AM such that

∂FM ∪ ∂AM = ∂M,

∂FM is an F-manifold,
f maps ∂AM to A ⊂ X and
∂∂FM = ∂FM ∩ ∂AM = ∂∂AM.

A bordism between two such singular n-manifolds

(M1, f1, ∂FM1, ∂AM1) and (M2, f2, ∂FM2, ∂AM2)

is an F-manifold (W, g) of dimension n + 1 and three codimension-1 submanifolds ∂0W,∂1W and
∂2W , such that

∂W = ∂0W ∪ ∂1W ∪ ∂2W,

∂0W ∼= M1 qM2 and g|∂0W restricts to f1 q f2,

∂1W is an F ′-manifold,
g maps ∂2W to A ⊂ X and
∂∂0W = ∂(∂1W ∪ ∂2W ) = ∂0W ∩ (∂1W ∪ ∂2W ).

Remark 1.7.13. The long exact sequence of the pair (F ,F ′)

· · · // NG
∗ [F ′](X)

iN // NG
∗ [F ](X)

jN // NG
∗ [F ,F ′](X)

∂N // NG
∗−1[F ′](X) // · · ·

of Remark 1.7.11 is called the Conner–Floyd exact sequence and has a geometric interpretation: ∂
is actually taking boundaries of singular (F ,F ′)-manifolds.
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Remark 1.7.14. For real homotopical equivariant bordism MOG
∗ (−) the corresponding long exact

sequence

· · · // MOG
∗ [F ′](X)

iMO // MOG
∗ [F ](X)

jMO // MOG
∗ [F ,F ′](X)

∂MO // MOG
∗−1[F ′](X) // · · ·

is called the tom Dieck exact sequence.
Remark 1.7.15. The natural transformation given by the Pontryagin–Thom construction (Theorem
1.5.3) can be applied between the Conner–Floyd exact sequence and tom Dieck exact sequence to
obtain a commutative diagram with exact rows:

· · · //

��

NG
∗ [F ′](X)

PT [F ′]

��

// NG
∗ [F ](X)

PT [F ]

��

// NG
∗ [F ,F ′](X)

PT [F,F ′]

��

// NG
∗−1[F ′](X)

PT [F ′]

��

// · · ·

��
· · · // MOG

∗ [F ′](X) // MOG
∗ [F ](X) // MOG

∗ [F ,F ′](X) // MOG
∗−1[F ′](X) // · · · .

The complex case is analogous. References are [MPC96, p. 158, p. 339] and [CF64, Section 5, p.
13].

Considering the pair (A,P) for geometric bordism has a useful interpretation.

Proposition 1.7.16 (compare [CF66, Lemma (5.2) and Theorem (7.3)]). The group NG
n [A,P] is

isomorphic to the group of bordism classes of G-vector bundles over trivial base spaces, with the
property that each fibre does not contain a trivial direct summand.

sketch proof. In a first step we notice that a manifold N , that represents an element [N ] ∈ NG
n [A,P]

is bordant to every tubular neighborhood of its fixed set M := NG, which lies in the interior of
N , since there are no fixed points on the boundary. This can be seen by a straigthening-the-angle
argument and then giving the bordism explicitly. The normal bundle of the embedding of M into N
is G-homeomorphic to a such a small tubular neighborhood. This normal bundle is a G-bundle with
the property that each fiber is a G-representation that does not contain a trivial G-representation
as a direct summand.

1.8 Euler classes of non-trivial representations
As an example of the use of families we show that for non-trivial G, the Pontryagin–Thom map
is not surjective by showing the existence of non-trivial elements of negative degree and so prove
the converse of Lemma 1.6.4. This is precisely [Cos96, Lemma 3.1]). Costenoble does not give a
complete proof but an indication how one could proceed. Let G be a compact Lie group and V an
indexing space.

Proposition 1.8.1 (see [Cos96, Lemma 3.1]). If V contains no trivial direct summand, then the
Euler class eV is a non-trivial element in MOG

−|V |.

Proof. We use the geometric description of MOG
−|V | (see Section 1.6) and show that χ(V ) is non-

zero in MO
G

−|V | = MO
G

−|V |[A] (compare Remark 1.7.10). (These χ(V ) are identified with the Euler
classes eV , see Remark 1.6.3.) We consider

j : MO
G

∗ [A] → MO
G

∗ [A,P]

and show that j(χ(V )) is invertible. In MO
G

−|V |[A] the element χ(V ) is represented by the 0-
dimensional singular manifold ∗ → D(V ) over D(V ) sending ∗ to 0 ∈ D(V ). We have

MO
G

−|V |[A,P] = colimW NG
−|V |+|W |[A,P](D(W ), S(W ))
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and j(χ(V )) ∈ MO
G

−|V |[A,P] is also represented by ∗ → D(V ). We can give an inverse to j(χ(V ))

and since MO
G

∗ [A,P] is non-zero it follows that j(χ(V )) is non-zero. The inverse is an element in

MO
G

|V |[A,P] = colimW N|V |+|W |[A,P](D(W ), S(W ))

represented by the map D(V ) → ∗. Notice that here we use that V contains no trivial direct
summand; S(V ) has no fixed points and [D(V ) → ∗] really lies in NG

|V |[A,P]. The product of
j(χ(V )) and its proposed inverse is defined by taking the product of the representing singular
manifolds. Hence it is represented by the map D(V ) → D(V ) in NG

|V |[A,P](D(V ), S(V )) that maps
all of D(V ) to 0 ∈ D(V ). We show that this is bordant to the element represented by the identity
D(V ) → D(V ), which represents the unit in

MO
G

∗ ⊃ MO
G

0 [A,P] = colimW NG
|V |[A,P](D(V ), S(V )).

The bordism is given by the singular manifold W := D(V )× I over (D(V ), S(V )) with the following
map:

W = D(V )× I → D(V )

(x, t) 7→

{
2tx t ≤ 1

2 ,

x t ≥ 1
2 ,

∂0W := D(V )× {0, 1}
∂1W := S(V )× [0, 1

2 ]

∂2W := S(V )× [ 12 , 1].

We check that this really gives the desired bordism. Clearly

∂W = ∂(D(V )× I) = (D(V )× ∂I) ∪ (∂D(V )× I)

= (D(V )× {0, 1}) ∪ (S(V )× I)

= (D(V )× {0, 1}) ∪ (S(V )× [0, 1
2 ]) ∪ (S(V )× [ 12 , 1]) = ∂0W ∪ ∂1W ∪ ∂2W.

Also ∂1W = S(V )× [0, 1
2 ] has no fixed point, because V does not contain a trivial direct summand

and
∂2W = S(V )× [ 12 , 1]

is mapped to S(V ) ⊂ D(V ). One easily checks that this gives the desired bordism between the
map D(V ) → D(V ) with image 0 (on D(V ) × {0} ⊂ ∂0W ) and the identity D(V ) → D(V ) (on
D(V )× {1} ⊂ ∂0W ). So j(χ(V )) really is invertible, hence χ(V ) and eV are indeed non-zero.

Lemma 1.6.4 and Proposition 1.8.1 give the following.

Proposition 1.8.2. For a compact Lie group G and an indexing space V , the Euler class eV is
trivial if and only if V contains a trivial direct summand.

This justifies Remark 1.5.4 about the non-surjectivity of the Pontryagin–Thom map for non-
trivial G.
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In this chapter we give an overview of known results without giving proofs. Mainly we state results
about the Pontryagin–Thom map in its non-equivariant, real equivariant and complex equivariant
form.

2.1 Non-equivariant bordism
Our description of the Pontryagin–Thom construction (Section 1.5) specializes to the non-equivariant
theory if we take G to be the trivial group. The classical result is by Thom.

Theorem 2.1.1 (see [Tho54, Théorème IV.12]). The real (non-equivariant) Pontryagin–Thom map

PT : N∗ → MO∗

is an isomorphism and
N∗ ∼= MO∗ ∼= Z/2[uk | k 6= 2t − 1, t > 0]

with generators uk of degree k for k ≥ 2.

Other proofs of this theorem can be found in [Liu62, Theorem 2], [Sto68, Chapter 2], [May99,
Chapter 25, Section 2] and in [Swi75, Theorem 12.30]. In his book, Stong also gives a proof that
the complex (non-equivariant) Pontryagin–Thom map is an isomorphism [Sto68, Chapter 2]. The
key step in the proofs are transversality arguments. For non-trivial G, the Pontryagin–Thom map
fails to be an isomorphism due to the lack of transversality when considering equivariant maps. As
an example of this failure consider G = Z/2 and let N be R with the non-trivial Z/2-action and
M = {∗} be the 0-dimensional manifold consisting of a point with trivial Z/2-action. The map
f : M → N that sends ∗ to 0 ∈ N is equivariant and not Z/2-homotopic to a map transverse to the
inclusion of 0 into N , since it is the only equivariant map from M to N and itself not transverse to
the inclusion of 0 into N .

2.2 Real equivariant bordism

Spectral sequences for equivariant homology theories
We follow Costenoble [Cos96, Section 3]. For an equivariant homology theory EG

∗ and a sequence
F0 ⊂ F1 ⊂ · · · ⊂ A of families of subgroups of G with

∪∞
i=0 Fi = A we obtain an (unraveled) exact

couple (compare [Boa99])

// EG
∗ [Fp−2]

||

i // EG
∗ [Fp−1]

i //

j
wwnnnnnnnnnnn

EG
∗ [Fp]

i //

j
xxqqqqqqqqqqq

EG
∗ [Fp+1]

j
wwooooooooooo

EG
∗ [Fp−1,Fp−2]

k

ggPPPPPPPPPPP

EG
∗ [Fp,Fp−1]

k

ggOOOOOOOOOOO

EG
∗ [Fp+1,Fp]

k

ffMMMMMMMMMMM

bb

coming from the exact sequence of Remark1.7.11; the maps i and j have degree 0 and the degree of
k is −1. This gives a spectral sequence with E1

p,q := EG
q [Fp,Fp−1].
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For complex equivariant bordism this spectral sequence is discussed for example in [Row78,
Section 2].

For real equivariant bordism we get E1
p,q := NG

q [Fp,Fp−1]. Costenoble mentions the following
result in [Cos96, Section 3, p. 160].
Proposition 2.2.1. The above spectral sequence converges to NG

∗ [A] = NG
∗ .

More details can be found by Wasserman [Was66, Theorem] and tom Dieck [tD72, §3]. This
helps to reduce the calculation of NG

∗ [A] to a non-equivariant problem; the groups NG
∗ [Fp,Fp−1]

can be expressed as sum of non-equivariant bordism groups if the families Fp and Fp−1 are adjacent,
i.e. they only differ by a single conjugacy class of a subgroup of G. A simple example of that is the
calculation of NG

∗ [{e},∅], the bordism group of free closed G-manifolds. From the free G-manifold
we pass to the manifold M/G and by considering the classifying space BG of G we obtain the
isomorphism NG

n [{e}] ∼= Nn−dimG(BG). Another reduction to a non-equivariant bordism problem
can be found by considering the pair of families P ⊂ A, which is one of the key ingredients of
Chapter 3.

G = Z/2

For the case G = Z/2 a sequence of families of subgroups is given by
∅ ⊂ {{e}} ⊂ {{e},Z/2}.

With this sequence of families the spectral sequence of Section 2.2 collapses after the first step and
we only need to consider short exact sequences. This is how Sinha proceeds in [Sin02]. As in Section
3 a comparison of the tom Dieck exact sequence and the Conner–Floyd exact sequence is used. Sinha
gives generators for MO

Z/2
∗ over N∗ and relations. Also the following description of NZ/2

∗ is given.

Theorem 2.2.2 (see [Sin02, Theorem 2.7]). The ring N
Z/2
∗ is the subring of MO

Z/2
∗ generated by

classes PT (gi,n) for certain geometric elements gi,n ∈ N
Z/2
∗ .

Sinha also describes the quotient NZ/2
∗ -module

MO
Z/2
∗ /N

Z/2
∗ ,

which can be interpreted as transversality obstructions.

The equivariant Pontryagin–Thom map
One major ingredient for the proof of Theorem 3.5.2 is the observation, that the equivariant Pon-
tryagin–Thom map is injective for certain groups. This has been shown by tom Dieck.
Theorem 2.2.3 (see [tD71, Theorem 2]). For G = Z/2× · · · × Z/2, the Pontryagin–Thom map

PT : NG
∗ (X,A) → MOG

∗ (X,A)

is a monomorphism.
The proof uses induction on the number of factors of Z/2 × · · · × Z/2. The key step is a

construction of a map similar to our map φN in Section 3.1 together with the localization techniques
of Section 3.2. We use Theorem 2.2.3 in the following two cases.
Corollary 2.2.4. For G = Z/2× · · · × Z/2, the Pontryagin–Thom map

PT : NG
∗ → MOG

∗

is a monomorphism.
Corollary 2.2.5. Let P denote the family of proper subgroups of G = Z/2 × · · · × Z/2. Then the
Pontryagin–Thom map

PT : NG
∗ [P] → MOG

∗ [P]

is a monomorphism.
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2.3 Complex equivariant bordism
Let G be a compact Lie group. In complex equivariant cobordism there are a couple of interesting
results. The Pontryagin–Thom map

PT : ΩG
∗ → MUG

∗

fails to be an isomorphism for non-trivial G due to a lack of surjectivity. On the other hand there
is the following Theorem by tom Dieck.

Theorem 2.3.1 (see [tD70, Proposition 1.3]). For a free G-space X, the equivariant complex
Pontryagin–Thom map

PT : ΩG
∗ (X) → MUG

∗ (X)

is an isomorphism.

Injectivity of the Pontryagin–Thom map has been much studied.

Proposition 2.3.2. The complex equivariant Pontryagin–Thom map

PT : ΩG
∗ → MUG

∗

is a monomorphism for certain types of groups G described below.

For cyclic groups of prime order this was shown by tom Dieck [tD70, Theorem 5.1(c)].
More generally for G a compact Abelian Lie group it was shown by Comezaña [Com96, p. 342],

that the Pontryagin–Thom map is a split monomorphism of MU∗-modules. This and the following
proposition was claimed by Löffler [Löf73] and proved in his (unpublished) thesis.

Proposition 2.3.3. For G a compact Abelian Lie group, MUG
∗ is a free MU∗-module concentrated

in even degrees.

Proofs of this proposition can be found in [Lan72, Theorem 1], [Oss72, Theorem 1], [Löf74, Satz
5.8] and also in [Com96, p. 342].

Toral G
For toral G = S1 × · · · × S1 we mention Hanke’s result [Han05, Theorem 1] in the beginning of the
next Chapter and state it already here:

Theorem 2.3.4. There is a pullback square

ΩG
∗

��

// MU∗[e
−1
V , Yd,V ]

��

MUG
∗

// MU∗[eV , e
−1
V , Yd,V ]

with all maps injective, for certain elements eV , e
−1
V and Yd,V , where V runs through a set J of

representations containing exactly one representative of every isomorphism class of irreducible non-
trivial representations and 1 + |V | ≤ d.
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Hanke shows in [Han05, Theorem 1] for the group T = S1 × · · · × S1 the existence of a pullback
square

ΩT
∗

��

// MU∗[e
−1
V , Yd,V ]

��

MUT
∗

// MU∗[eV , e
−1
V , Yd,V ]

with injective maps, for certain elements eV , e−1
V and Yd,V , where V runs through a set J of repre-

sentations containing exactly one representative of every isomorphism class of irreducible non-trivial
representations and 1+ |V | ≤ d. The goal of this chapter is to parallel his paper to obtain a similar
result for real equivariant bordism.

3.1 The fixed set of the Thom space
For the rest of this chapter we take G to be Z/2× · · · × Z/2 = (Z/2)k.
Remark 3.1.1. Although only this case is important in the following, the statements in Section 3.1
are still true for compact Abelian Lie groups and the proofs are very similar. However, for infinite
groups, the definition of B which follows has to be slightly altered; see [Han05, p. 683]. In Sections
3.2-3.5 the assumption

G = Z/2× · · · × Z/2

is imperative as counterexamples demonstrate; see Chapter 4.
For G = Z/2 × · · · × Z/2 = (Z/2)k a complete set J of representations containing exactly one

representative of every isomorphism class of non-trivial irreducible representations consists of 2k − 1
elements; J = {Vi}1≤i≤2k−1. We choose a base point 1 ∈ BO (see Remark 1.3.18) and set

B := BO×|J| = BO×(2k−1).

The H-space structure on BO induces an H-space structure on B.
The following fact can be found (without proof) in [Sin01, Proposition 4.6].

Remark 3.1.2. The space B classifies G-bundles without fixed points in every fiber over a base space
X with trivial G-action. Such a bundle E → X can be written as⊕

V ∈J

EV ⊗R V → X

for real vector bundles EV . This bundle is classified by a map X → B, where the map in the V -th
component classifies EV .
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The statement is a classical result by Segal [Seg68, Proposition 2], and for G a finite group
Oliver [Oli96, Appendix] also gives a proof.

We construct a map φMO : MOG
∗ → MO∗[eV , e

−1
V , Xd,V ] and need a few identifications to

proceed. Consider the fixed point set of the Thom space of the n-dimensional equivariant universal
bundle (T (ξGn ))G.

Proposition 3.1.3 (compare [Sin01, Proposition 4.7]). We have the following homotopy equivalence:

(T (ξGn ))G '
∨

W∈RO+(G)
|W |=n

T (ξ|WG|) ∧

(∏
V ∈J

BO(νV (W ))

)
+

,

where RO+(G) is a set of G-representations, containing one from every isomorphism class. It can
be seen as a subset of RO(G). The number of times V appears as a direct summand of W is denoted
by νV (W ).

Proof. The space (BOG(n))G classifies n-dimensional G-vector bundles E over a base space X with
trivial G-action. Such an E decomposes according to Remark 3.1.2 as follows:

E ∼=
⊕

V ∈J∪{1}

EV ⊗R V.

We conclude that a path component F of E over X with fiber W is classified by a map to∏
V ∈J∪{1}

BO(νV (W )),

where the map to the factor BO(νV (W )) is a classifying map of EV . Hence the path components
of (BOG(n))G are those spaces and

(BOG(n))G '
∐

W∈RO+(G)

 ∏
V ∈J∪{1}

BO(νV (W ))

 .

The universal bundle over each component∏
V ∈J∪{1}

BO(νV (W )) = BO(|WG|)×
∏
V ∈J

BO(νV (W ))

is the product ξ|WG| × ξ, where ξ|WG| is the |WG|-dimensional universal bundle and ξ is a G-vector
bundle with non-trivial action in each fiber, so E(ξ)G is the zero section

∏
V ∈J BO(νV (W )). Passing

to Thom spaces gives

(T (ξGn ))G '
∨

W∈RO+(G)
|W |=n

T (ξ|WG|) ∧

(∏
V ∈J

BO(νV (W ))

)
+

.

Proposition 3.1.4 (compare [Sin01, Theorem 4.9]). There is an equivalence of ring-spectra

ΦGMOG ' IRO(G) ∧MO ∧B+

with
IRO(G) :=

∨
W∈RO(G)

|W |=0

S|WG|.
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Here IRO(G) carries the structure of a ring spectrum induced by the isomorphism

S|WG| ∧ S|V G| → S|(W⊕V )G|

for elements W,V ∈ RO(G), |W | = |V | = 0.

Proof. As in the definition of geometric fixed point spectrum (see Section 1.2, Definition 1.2.56) we
choose a sequence of representations (Kn)n≥0. Proposition 3.1.3 allows us to make the identification

(φGTOG)n = T (ξG|Kn|)
G '

∨
W∈RO+(G)
|W |=|Kn|=n

T (ξ|WG|) ∧

(∏
V ∈J

BO(νV (W ))

)
+.

The structure maps send the wedge summand of a representation W ∈ RO+(G) to the summand
of a representation W ′ with W −Kn = W ′ −Kn+1 in RO(G). The virtual dimension of W −Kn =
W ′−Kn+1 is zero. This leads to a splitting of ΦGTOG as a wedge sum; each summand corresponding
to an element in RO(G) with virtual dimension zero. For one wedge summand indexed by W the
structure map is the structure map of the prespectrum TOG on the first factor smashed with
inclusions of the BO(νV (W ))s on the second factor.

Passing to spectra we obtain a copy of MO ∧ (
∏

V ∈J BO)+ suspended by S|V |, where V corre-
sponds the wedge summand indexed by S|W−Kn|.

The ring structure on φGMOG is induced by the ring structure on MOG and checking how
the identification of Proposition 3.1.3 behaves on smash products, we see that our equivalence is
compatible with the ring structures.

Proposition 3.1.5 (compare [Han05, p. 684]). There is an isomorphism of graded rings

(IRO(G) ∧MO ∧B+)∗
∼= // MO∗(B)⊗AO∗(G) .

Proof. In the proof of Proposition 3.1.4 we describe IRO(G) ∧ MO ∧ B+ as suspended copies of
MO ∧B+. For such a copy indexed by an element W − U ∈ RO(G) of virtual dimension zero with
W = WG ⊕ (WG)⊥ and U = UG ⊕ (UG)⊥ we identify (S(W−U)G ∧MO ∧B+)∗ with

MO∗(B)⊗ (e(WG)⊥ · e−1
(UG)⊥

) ⊂ MO∗(B)⊗AO∗(G).

This induces the desired isomorphism.

Proposition 3.1.6 (compare [Sin01, Theorem 4.10]). There is an isomorphism of graded rings

MO∗(B)⊗AO∗(G) ∼= MO∗[eV , e
−1
V , Yd,V ],

where V runs through a set J of representations containing exactly one representative of every
non-trivial irreducible representations of G and d runs through the integers such that

1 + |V | ≤ d.

Proof. Since the set J is finite we have the isomorphism of the Künneth formula

MO∗(
∏
V ∈J

BO) ∼=
V ∈J⊗
MO∗

MO∗(BO).
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Conner and Floyd calculated MO∗(−) using the Atiyah–Hirzebruch spectral sequence, see [CF64,
Theorem 8.3, Theorem 17.1]. For MO∗(BO) we obtain

MO∗(BO) = MO∗(colimn BO(n))
∼= colimn MO∗(BO(n))
∼= colimn MO∗ ⊗Z/2 H∗(BO(n),Z/2)
∼= colimn MO∗ ⊗Z/2 Z/2[X1, . . . , Xn]
∼= colimn MO∗[X1, . . . , Xn]
∼= MO∗[Xi]1≤i≤∞,

where each generator Xi has degree i. The generators Xi can be represented by a map

RP i → BO(1) → BO

classifying the tautological line bundle Ei → RP i, (compare [Koc96, Proposition 2.3.7 and 2.4.3].)
This is all we need to know to get the isomorphism:

MO∗(B)⊗AO∗(G) ∼= MO∗(
∏
V ∈J

BO)⊗Z Z[eV , e−1
V ]V ∈J

∼=
V ∈J⊗
MO∗

MO∗(BO)⊗Z Z[eV , e−1
V ]V ∈J

∼=
V ∈J⊗
MO∗

MO∗[Xi,V ]1≤i≤∞ ⊗R Z[eV , e−1
V ]V ∈J

∼= MO∗[eV , e
−1
V , Xi,V ]V ∈J,1≤i≤∞

∼= MO∗[eV , e
−1
V , Xd−|V |,V · e−1

V ]V ∈J,1+|V |≤d. (?)

Definition 3.1.7. For a G-representation V ∈ J and 1 + |V | ≤ d ≤ ∞ we set

Yd,V := Xd−|V |,V · e−1
V .

We identify Yd,V with the image of

Xd−|V | ⊗ e−1
V ∈ MOd−|V |(BO)⊗AO|V |(G)

under the inclusion of BO as V -th factor in B viewed, via the isomorphism (?), as an element in
MO∗[eV , e

−1
V , Xi,V ]. With this definition we get the desired isomorphism

MO∗(B)⊗AO∗(G) ∼= MO∗[eV , e
−1
V , Yd,V ]V ∈J,1+|V |≤d.

Notice that Yd,V is defined in such a way, that its dimension is d. From now on we shorten

MO∗[eV , e
−1
V , Yd,V ]V ∈J,1+|V |≤d

in our notation to
MO∗[eV , e

−1
V , Yd,V ].

Remark 3.1.8. In the introduction of Hanke’s paper [Han05, p. 678], analogous classes are introduced:
“[. . .] certain classes YV,d, 2 ≤ d < ∞ [. . .]”. Later in the paper it is clarified that |V |+ 1 ≤ d.
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Definition 3.1.9. We combine the results of Proposition 3.1.4 to 3.1.6 to define a map

φMO : MOG
∗ → MO∗[eV , e

−1
V , Yd,V ]

as follows:

MOG
∗ Remark 1.2.57

// φGMOG
∗

∼=
Proposition 3.1.4

// (IRO(G) ∧MO ∧B+)∗

∼=
Proposition 3.1.5

// MO∗(B)⊗AO∗(G)
∼=

Proposition 3.1.6
// MO∗[eV , e

−1
V , Yd,V ]

where the first map is the map restricting to fixed points. Not including the last isomorphism we
get a map

φ̃MO : MOG
∗ → MO∗(B)⊗AO∗(G).

We check that our notation eV for two different notions of eV makes sense. Euler classes
eV (see Definition 1.3.22) are mapped to indeterminates eV (see 1.2.50), that now appear in
MO∗[eV , e

−1
V , Yd,V ] and come from the identification

AO∗(G) ∼= Z[eV , e−1
V ].

Proposition 3.1.10 (compare [Han05, p. 685]). For an irreducible non-trivial representation V and
the corresponding Euler class eV ∈ MOG

∗ we have

φMO(eV ) = eV ∈ MO∗[eV , e
−1
V , Yd,V ].

Proof. The Euler class is represented by a map S0 → TOG(|V |). Reducing to fixed sets gives a map

S0 → (TOG(|V |))G =
∨

W∈R+(G)
|W |=|V |

T (ξ|WG|) ∧

(∏
V ∈J

BO(νV (W ))

)
.

Going through the definition of φMO, under the isomorphism

φGMOG
∗
∼= (IRO(G) ∧MO ∧B+)∗,

the Euler class is sent to 1 ∈ MO∗(B), in the copy of MO∗(B) suspended by SV−|V |. Under the
next isomorphism

(IRO(G) ∧MO ∧B+)∗ ∼= MO∗(B)⊗AO∗(G)

it is mapped to 1 ⊗ eV G⊥ · e−1

|V |G⊥ = 1 ⊗ eV · e−1
0 = 1 ⊗ eV , which is mapped to eV under the last

identification
MO∗(B)⊗AO∗(G) ∼= MO∗[eV , e

−1
V , Yd,V ].

Next we want to construct a map

φN : NG
∗ → MO∗[eV , e

−1
V , Yd,V ].

LetMn be a manifold representing an element [M ] ∈ NG
∗ and let F ⊂ MG be a connected component

of the fixed set of M . Then F is embedded in M . The normal bundle νMF of F in M is a real G-vector
bundle of dimension d, with non-trivial G-action in each fiber. This bundle decomposes as follows:

νMF =

j⊕
k=1

Ek ⊗R Vk
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for real vector bundles Ej and irreducible G-representations Vj . Define

bF := bF ⊗ (e
−|E1|
V1

· · · · · e−|Ej |
Vj

) ∈ MOn−d(B)⊗AOd(G),

where bF ∈ MOn−d(B) is represented by a map F → B with Vk-th component the classifying map
for Ek. Altogether we get a map

φ̃N : NG
∗ → MO∗(B)⊗AO∗(G)

by setting
φ̃N([M ]) :=

∑
F⊂MG

bF ∈ (M(B)⊗AO(G))n.

Compare tom Dieck’s description of the map in [tD71, Section 5]. Composing with the isomorphism
of Proposition 3.1.6 we get a map

φN : NG
∗ → MO∗[eV , e

−1
V , Yd,V ].

For the next theorem we construct a map MO∗(B) → MO∗(B).

Definition 3.1.11 (compare [tD70, p. 354]). The inverse of the H-space B structure gives a map

−−1 : B → B.

This induces a map
ν : MO∗(B) → MO∗(B),

which has order 2. Together with the isomorphism of Proposition 3.1.6, ν induces a map

ι : MO∗[eV , e
−1
V , Yd,V ] → MO∗[eV , e

−1
V , Yd,V ],

such that the following diagram commutes:

MO∗(B)⊗AO(G)

ν⊗id

��

∼= // MO∗[eV , e
−1
V , Yd,V ]

ι

��

MO∗(B)⊗AO(G)
∼= // MO∗[eV , e

−1
V , Yd,V ].

Remark 3.1.12. Notice for the complex analogue to our Proposition 3.1.10, namely the statement

ι ◦ φMU ◦Ψ([P (Cd ⊕ V )]) = YV,d + e−d
V ∗ ,

in the notation used there [Han05, p. 685], the analogous map ι is used. However, since

(ν ⊗ id)(1⊗ eV ) = ν(1)⊗ eV = 1⊗ eV ,

we have
ι ◦ φMO(eV ) = eV = φMO(eV ).

(In general ι ◦ φMO 6= φMO.)

Theorem 3.1.13 (compare [tD70, Proposition 4.1]). The following diagram commutes:

NG
∗

φ̃N //

PT

��

MO∗(B)⊗AO∗(G)

MOG
∗

φ̃MO // MO∗(B)⊗AO∗(G).

ν⊗id

OO
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Proof. Let Mn be a manifold representing an element [M ] ∈ NG
n . We embed M in a real G-

representation U = UG ⊕
⊕

j∈J V
kj

j . A map f : SU → T (ξGm) then represents PT ([M ]), where m is
the codimension-|U | − n of M in U . This map, when restricted to M , classifies the normal bundle
νUM of M in U . Now we chase through the definition of φ̃MO. Restricting f to fixed points gives a
map

fG : SUG

→
∨

W∈RO+(G)

W=WG⊕
⊕

j∈J V
mj
j

|W |=m

T (ξ|WG|) ∧

∏
j∈J

BO(mj)


+

,

which is transverse to ∐
W∈RO+(G)

W=WG⊕
⊕

j∈J V
mj
j

|W |=m

BO(|WG|)×
∏
j∈J

BO(mj).

(See [CW92, Section 2] and for more on transversality.) The pre-image under fG is the fixed point
set F = MG. Restricting fG to F gives a classifying map for νUM |F . If we denote by FW the parts
of F over which νUM |F has fiber W we get a decomposition F =

∐
FW and fG decomposes into a

sum of maps
fG
W : νUM |FW

→ BO(|WG|)×
∏
j∈J

BO(mj).

Since νUM |FW
is a vector bundle over a trivial base we have a decomposition

νUM |FW

∼= DW
1 ⊕

⊕
j∈J

DW
j ⊗R Vj

and if dWj : FW → BO(|DW
j |) is a classifying map for DW

j we get a map dW : FW → B. Then
φ̃MO ◦ PT ([M ]) is ∑

W

[dW ]⊗

∏
j∈J

e
mj

Vj
· e−kj

Vj

 ∈ MO∗(B)⊗AO∗(G).

Recalling the definition of φ̃N we have a decomposition of the normal bundle of the embedding
F → M for every fiber W :

νMF |FW
=
⊕
j∈J

EW
j ⊗R V W

j

and if eWj : FW → BO(|Ej |) is a classifying map for EW
j we get a map eW : FW → B. Then φ̃N([M ])

is ∑
W

[eW ]⊗

∏
j∈J

e
−|EW

j |
V W
j

 ∈ MO∗(B)⊗AO∗(G).

We have the following embeddings:

F

??������

��
??

??
?

M

��
??

??
??

UG

??������

U .

Let νU
G

F denote the normal bundle of F in UG, which is trivial and let νUUG denote the normal
bundle of UG in U , which is UG⊥. Considering the normal bundle of F in U gives an isomorphism
of bundles:

νU
G

F ⊕ νUUG
∼= νUF

∼= νMF ⊕ νUM .
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Restricting to FW gives:

νU
G

F |FW
⊕ νUUG |FW

∼=
⊕

EW
j ⊗R V W

j ⊕

DW
1 ⊕

⊕
j∈J

DW
j ⊗R Vj

 .

It follows that DW
1

∼= νU
G

F |FW
and the bundle inverse to EW

j is equivalent to the bundle DW
j ; hence

νeWj is homotopic to dWj and [νeW ] = [dW ]. Considering the fiber, the isomorphism of bundles
above yields:

WG ⊕
⊕
j∈J

V
kj

j =
⊕
j∈J

V
|Ej |
j ⊕WG ⊕

⊕
j∈J

Vj
mj .

Counting dimensions gives: kj = |Ej | + mj and hence e
−|Ej |
Vj

= e
mj

VJ
· e−kj

Vj
. Together we have as

desired isomorphism

∑
W

[dW ]⊗

∏
j∈J

e
mj

Vj
· e−kj

Vj

 =
∑
W

[νeW ]⊗
(∏

e
−|EW

j |
V W
j

)
.

3.2 Localization
The goal of this section is to give an alternative description of φMO. The key step is a localization
result by tom Dieck.

Proposition 3.2.1 (see [tD71, Theorem 1(b)]). Let S be the set of Euler classes of non-trivial
irreducible representations in MOG

∗ . Then the localization map into the ring of quotients

λ : MOG
∗ → S−1MOG

∗

is injective.

Compare the complex version of this Proposition [Sin01, Corollary 5.2].
The map

φ̃MO : MOG
∗ → MO∗(B)⊗AO∗(B)

sends all elements in S to units. This can be seen by considering

φMO : MOG
∗ → MO∗[eV , e

−1
V , Yd,V ].

Clearly the image φMO(eV ) of an Euler class eV (compare section 1.8) is a unit inMO∗[eV , e
−1
V , Yd,V ].

Hence the universal property of localization gives a unique map

Φ̃MO : S−1MOG
∗ → MO∗(B)⊗AO∗(B)

such that Φ̃MO ◦ λ = φ̃MO. We cite the following result without a proof.

Proposition 3.2.2 (see [tD71, p. 217]). The map

Φ̃MO : S−1MOG
∗ → MO∗(B)⊗AO∗(B)

is an isomorphism.
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Complex versions of the propositions are [tD70, Theorem 3.1] and [Sin01, Corollary 4.15]. For
G = Z/2 the corresponding statement is [Sin02, Corollary 3.19]. Fitting it all together and composing
with the isomorphism of Proposition 3.1.6 gives the following commutative diagram.

MOG
∗

λ //

φ̃MO

''PPPPPPPPPPPP

φMO

++

S−1MOG
∗

Φ̃MO

��

ΦMO

uu

MO∗(B)⊗AO∗(G)

Proposition 3.1.6 ∼=
��

MO∗[eV , e
−1
V , Yd,V ]

Corollary 3.2.3. We have
ΦMO ◦ λ = φMO

and φMO is a monomorphism.

3.3 The geometric image
Proposition 3.3.1 (compare [Han05, Proposition 3]). The image of φN lies in the subalgebra

MO∗[e
−1
V , Yd,V ] ⊂ MO∗[eV , e

−1
V , Yd,V ].

Proof. Let Mn be a manifold representing an element [M ] ∈ NG
∗ and let F ⊂ MG be a connected

component of the fixed set ofM . As in the definition of φN, the normal bundle of F inM decomposes
as follows:

νMF =

j⊕
k=1

Ek ⊗R Vk.

We proceed to show that

bF = bF ⊗ V
−|E1|
1 · · · · · V −|Ej |

j ∈ MOn−k(B)⊗AOk(G) ∼= MO∗[eV , e
−1
V , Yd,V ]

already lies in MO[e−1
V , Yd,V ] by inspection of bF . This element in MOn−k(B) is represented by a

map
F → BO(|E1|)× · · · ×BO(|Ej |)

so bF lies in

MO∗(BO(|E1|)× · · · ×BO(|Ej |)) ∼=
1≤k≤q⊗
MO∗

MO∗(BO(|Ej |))

∼=
1≤k≤q⊗
MO∗

MO∗[X1, . . . , X|Ek|]

⊂
1≤k≤q⊗
MO∗

MO∗[Xd,Vk
]d>0.

In fact every element in MO∗(BO(|Ej |)) can be written as a sum of monomials with at most |Ej |
factors Xd,Vj . (Compare the classical calculations in [CF64, Theorem 8.3] and [Koc96, Propositions
2.4.3 and 2.3.7].) By definition of the Yd,V ’s we have Xd,V = Yd+|V |,V · eV and this asserts that
eVj appears at most |Ej | times as factor in bF and hence appears in nonnegative degree (i.e. with
non-positive exponent) in bF . Together bF lies in MO∗[e

−1
V , Yd,V ] and φN([M ]) is just a sum of

elements bF , so it also lies in MO∗[e
−1
V , Yd,V ] ⊂ MO∗[eV , e

−1
V , Yd,V ].
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3.4 Families of subgroups and isomorphisms
Proposition 3.4.1 (compare [Han05, Proposition 4]). There is an isomorphism

κN : NG
∗ [A,P] → MO∗[e

−1
V , Yd,V ]

such that the following diagram commutes:

MO∗[e
−1
V , Yd,V ]

NG
∗ [A]

jN
//

φN

33ffffffffffffffffffffffffff
NG

∗ [A,P]

κN

77ooooooooooo
.

The map jN comes from the Conner–Floyd exact sequence (see Remark 1.7.13).

Proof. First we define a map κ̃N : NG
∗ [A,P] → MO∗[eV , e

−1
V , Yd,V ]. An element [N ] ∈ NG

n [A,P]
can be viewed as as vector bundle E → M of dimension m over a connected component M (of
dimension n−m) of its fixed set NG of dimension n−m (see Proposition 1.7.16). This is a vector
bundle over a trivial base. From here we proceed as in the definition of φN. This vector bundle has
a decomposition:

E =

j⊕
k=1

Ek ⊗R Vk.

Using the classifying maps for Ej we get a map

M → BO(|E1|)× · · · ×BO(|Ej |) → B,

which gives an element bM ∈ MOn−m(B) and finally an element

κN([N ]) := bM := bM ⊗ e
−|E1|
V1

· · · · · e−|Ej |
Vj

∈ MOn−m ⊗AOm(G).

Composing with the isomorphism of Proposition 3.1.6 we get a map

κN : NG
∗ [A,P] → MO∗[eV , e

−1
V , Yd,V ].

The image of κN already lies in MO∗[e
−1
V , Yd,V ]. This is proved exactly as was Proposition 3.3.1. To

see that κN is an isomorphism we give an inverse

κ−1
N : MO∗[e

−1
V , Yd,V ] → NG

∗ [A,P].

The element e−1
V is sent to the class of the disc bundle of V viewed as a bundle over a point. Since

V does not contain the trivial representation its unit disc bundle D(V ) has boundary S(V ) without
fixed points. Then κN sends this bundle back to e−1

V , since we have the decomposition R⊗R V → ∗
and the class of the map ∗ → BO(1) classifying R gives 1 ∈ MO∗(B), so

κN([V → ∗]) = 1⊗ e
−|R|
V = e−1

V .

On Yd,V the inverse κ−1
N is constructed as follows: Let Ed−|V | denote the line bundle representing

the generator Xd−|V | (compare the proof of Proposition 3.1.6). Then κ−1
N (Yd,V ) is defined to be the

class of the disc bundle of Ed−|V | ⊗ V. As above we get

κN([Ed−|V | ⊗ V ]) = Xd−|V | ⊗ e
|Ed−|V ||
V = Xd−|V | ⊗ e−1

V = Yd,V .

Now κ−1
N is defined by requiring it to be a homomorphism of N∗-modules and a ring homomorphism.

Clearly κ−1
N is a right and a left inverse of κN.

The commutativity follows immediately from the construction of κN.
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Proposition 3.4.2 (compare [Han05, Proposition 4]). There is an isomorphism

κMO : MOG
∗ [A,P] → MO∗[eV , e

−1
V , Yd,V ]

such that the following diagram commutes:

MO∗[eV , e
−1
V , Yd,V ]

MOG
∗ [A]

jMO

//

φMO

22ffffffffffffffffffffffffffff
MOG

∗ [A,P]

κMO

66mmmmmmmmmmmmm
.

The map jMO comes from the tom Dieck exact sequence (see Remark 1.7.14).

Proof. By definition MOG
∗ [A,P] is MOG

∗ (EA, EP). Let ΣEP be the unreduced suspension of EP :

ΣEP := ([0, 1]× EP)/(0,x)∼(0,y)
(1,x)∼(1,y).

We identify EP with 1
2 ×EP ⊂ ΣEP and denote the upper cone by C+EP := [ 13 , 1]×EP ⊂ ΣEP

and the lower cone by C−EP := [0, 2
3 ]× EP. Then (EA, EP) ' (C−EP, EP) and the inclusion

(C−EP, EP) → (ΣEP, C+EP)

gives an isomorphism via excision:

MOG
∗ (EA, EP) ∼= MOG

∗ (ΣEP, C+EP).

To calculate MOG
∗ (ΣEP, C+EP) = MOG

∗ (ΣEP) we apply Lemma 4.2 of [Sin01]:
Lemma 3.4.3 (see [Sin01, Lemma 4.2]). Let Z be a G-complex such that ZG ' S0 and ZH is
contractible for any proper subgroup H ( G. For a finite G-complex X the restriction map

(Map(X,Y ∧ Z))G → Map(XG, (Y ∧ Z)G) = Map(XG, Y G)

is a homotopy equivalence.
For the G-complex ΣEP (compare Section 1.7) and any proper subgroup H ( G, the space

(ΣEP)H is contractible by the construction of EP and furthermore

(ΣEP)G ' S0.

Since SW is a finite G-complex, we obtain

MOG
n (ΣEP) ∼= colimW [SW , T (ξG|W |+n) ∧ ΣEP]G

∼= colimW [(SW )G, (T (ξG|W |+n))
G]

∼= ΦGMOG
n .

Combining this with the isomorphism ΦGMOG
n
∼= MO∗[eV , e

−1
V , Yd,V ] of Propositions 3.1.4 to 3.1.6,

we get the desired isomorphism κMO. To show commutativity of the following diagram, we look at
the definitions of φMO and κMO:

MOG
n (EA) = MOG

∗ [A] = MOG
∗

Remark 1.2.57 //

j

��

ΦGMOG
n

MOG
∗ (EA, EP)

∼= // MOG
∗ (ΣEP).

∼=

OO
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Here the upper horizontal map is the first map in the definition of φMO; it is restriction to fixed
sets (see Definition 3.1.9). The vertical map on the left hand side j comes from the tom Dieck exact
sequence (compare Remark 1.7.14). Let f represent an element in MOG

n = MOG
n (EA),

f : SW → TOn(ξ
G
n+|W |) ∧ EA.

Restricting to fixed sets gives an element represented by

fG : (SW )G → (TOn(ξ
G
n+|W |))

G.

On the other hand we see that

j(f) ∈ [SW , T (ξGn+|W |) ∧ EA/EP]G = [(SW )G, (T (ξGn+|W |) ∧ (ΣEP))G]

= [(SW )G, (T (ξGn+|W |))
G]

gives the same element and the diagram commutes. Combining this with isomorphisms of Proposi-
tions 3.1.4 to 3.1.6 we get κMO ◦ j = φMO.

We can combine the diagram of Proposition 3.4.2 with the isomorphism ι.

Corollary 3.4.4. The following diagram commutes:

MO∗[eV , e
−1
V , Yd,V ]

MOG
∗ [A]

jMO

//

ι◦φMO

22ffffffffffffffffffffffffffff
MOG

∗ [A,P]

ι◦κMO

66mmmmmmmmmmmmm
.

3.5 Conclusion
Proposition 3.5.1 (compare [Han05, Proposition 4]). The following diagram commutes:

NG
∗ [A,P]

PT [A,P]

��

κN // MO∗[e
−1
V , Yd,V ]

i

��

MOG
∗ [A,P]

ι◦κMO // MO∗[eV , e
−1
V , Yd,V ]

Proof. This is essentially the same as the proof of Theorem 3.1.13. Notice that ι corresponds to ν
there (see Definition 3.1.11). Given an element [N ] in NG

n [A,P] we construct the element i◦κN([N ])
using the same notation as in the definition of κN. Then

i ◦ κN([N ]) = bM ⊗ e
−|E1|
V1

· · · · · e−|Ej |
Vj

∈ MOn−k ⊗AOk(G).

On the other hand we choose an embedding N → U into a G-representation

U = UG ⊕
⊕
i∈I

Vi

and PT [A,P]([N ]) is then represented by a map

SU → T (ξG|U |−n) ∧ EP

classifying the normal bundle of the embedding. Considering the map

SUG

→ T (ξG|U |−k))
G
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viewed as an element in φGMOG we obtain the element κMO ◦PT [A,P]([N ]). As before we examine
the normal bundles of the embeddings

M

??������

��
??

??
?

N

��
??

??
??

UG

??������

U

and get the desired conclusion

ι ◦ κMO ◦ PT [A,P]([N ]) = i ◦ κN([N ]).

Theorem 3.5.2 (compare [Han05, Theorem 1]). The following diagram commutes and is a pull-back
with all maps injective:

NG
∗

PT

��

φN // MO∗[e
−1
V , Yd,V ]

i

��

MOG
∗

ι◦φMO // MO∗[eV , e
−1
V , Yd,V ]

Proof. Putting together the exact sequences of Remarks 1.7.11 and 1.7.15 and the commutative
diagrams of Propositions 3.4.1, 3.5.1 and Corollary 3.4.4, gives the following commutative diagram
with exact horizontal rows:

MOn[e
−1
V , Yd,V ]

i

��

NG
n [A]

PT [A]

��

jN
//

φN

22fffffffffffffffffffffffffffffff
NG

n [A,P]

PT [A,P]

��

∼=
κN

66mmmmmmmmmmmmm
∂N // NG

n−1[P]

PT [P]

��

MOn[eV , e
−1
V , Yd,V ]

MOG
n [A]

jMO

//

ι◦φMOfffffffffffffffff

22fffffffffff

MOG
n [A,P]

∼=
ι◦κMO

66mmmmmmmmmmmmm
∂MO // MOG

n−1[P].

Using the isomorphisms κN and ι ◦ κMO to substitute

NG
n [A,P]

PT [A,P]

��

MOG
n [A,P]
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in the middle by the inclusion
MOn[e

−1
V , Yd,V ]

i

��

MOn[eV , e
−1
V , Yd,V ],

gives the following commutative diagram with short exact sequences as rows:

0 // NG
n

PT

��

φN // MOn[e
−1
V , Yd,V ]

i

��

∂N◦κ−1
N // NG

n−1[P]

PT [P]

��

// 0

0 // MOG
n

ι◦φMO // MOG
n [eV , e

−1
V , Yd,V ]

∂MO◦(ι◦κMO)−1

// MOG
n−1[P] // 0.

The Pontryagin–Thom maps PT = PT [A] and PT [P] are injective by Section 2.2 and so is the
inclusion in the middle. From that and the injectivity of ι ◦ φMO (see Section 3.2) the injectivity of
φN follows. (The injectivity of φN can also be deduced from the injectivity of jN; see Proposition
4.1.1). To prove the pullback property it suffices to show that an element x ∈ im i ∩ im ι ◦ φMO

comes from an element in NG
n . Let y ∈ MOn[e

−1
V , Yd,V ] and let z ∈ MOG

n be an element such that
i(y) = x = ι ◦ φMO(z). Then

PT [P] ◦ (∂N ◦ κ−1
N )(y) = (∂MO ◦ (ι ◦ κMO)

−1) ◦ i(y)
= (∂MO ◦ κ−1

MO ◦ ι−1) ◦ (ι ◦ φMO)(z)

= (∂MO ◦ κ−1
MO ◦ φMO)(z) = (∂MO ◦ jMO)(z) = 0

by exactness of the lower row and hence (∂N ◦ κ−1
N )(y) = 0 since PT [P] is injective. By exactness

of the upper row y is in the image of φN and we get an element m ∈ NG
n with φN(m) = y and

PT (m) = z as desired.

We identify MO∗[e
−1
V , Yd,V ] as a subring of MO∗[eV , e

−1
V , Yd,V ] via i.

Corollary 3.5.3 (compare [Han05, Corollary 1]). The following isomorphism of MO∗-algebras
describes geometric equivariant bordism for G = Z/2× · · · × Z/2:

NG
∗
∼= ι ◦ φMO(MOG

∗ ) ∩MO∗[e
−1
V , Yd,V ].

3.6 Comparison with Sinha’s results for G = Z/2

The description of MO
Z/2
∗ in [Sin02, Theorem 2.4] is more explicit than ours in Theorem 3.5.2. In

both cases MO
Z/2
∗ is identified with a subring of

MO∗[eσ, e
−1
σ , Yd,σ]. Here σ denotes the non-trivial one-dimensional real representation of Z/2.

Also the description of N
Z/2
∗ in Theorem 2.7 of [Sin02] is more explicit than ours, but the

generators given there can be derived from the pullback property of our Theorem 3.5.2 and Theorem
2.4 of [Sin02].



4 Counterexamples

Theorem 3.5.2 fails to be true if G is not of the form Z/2× · · · × Z/2. For the complex case Hanke
shows that his Theorem 2.3.4 [Han05, Theorem 1] does not hold if G is not of the form S1×· · ·×S1.
He gives counterexamples for G = Z/n × Z/n and G = Z/n2 [Han05, Section 4]. In the real case
the situation is similar. There are different ways Theorem 3.5.2 can fail for G not of the form
Z/2× · · · × Z/2. The claim for G = (Z/2)k for some k is that the diagram

NG
∗

PT

��

φN // MO∗[e
−1
V , Yd,V ]

i

��

MOG
∗

ι◦φMO // MO∗[eV , e
−1
V , Yd,V ]

is a pull-back and all maps are injective. In Section 4.1 we show that φN also fails to be injective
for G not of the form Z/2 × · · · × Z/2. In this sense, our Theorem 3.5.2 is the best possible, since
it does not hold for other types of groups. For G = Z/4 we give an explicit counterexample. In
Section 4.2 we show that ι ◦ φMO fails to be injective for G = Z/4. Clearly i is injective for all
groups, but PT might not be injective for certain groups; compare Question 5.2.6. If this was the
case, the description would also cease to be a pull-back. We do not know if there is a group G, such
that the diagram is not a pull-back; even in a case where PT remains injective; see Question 5.2.4.

4.1 Geometric failure
Proposition 4.1.1. The homomorphism

jN : NG
∗ [A] → NG

∗ [A,P]

from the Conner–Floyd exact sequence (see Remark 1.7.11) is a monomorphism if and only G =
(Z/2)k for some k.

Proof. Stong proves in [Sto70b, Proposition 14.2, p. 75], that

ιN : NG
∗ [P] → NG

∗ [A]

is trivial if and only if G = (Z/2)k for some k. (One direction is already in [Sto70a, Proposition 2])
Taking this together with the Conner–Floyd exact sequence of the pair (A,P) (see Remark 1.7.13)
completes the proof.

Together with Proposition 3.4.1 we immediately get the following.

Corollary 4.1.2. The homomorphism

φN : NG
∗ → MO∗[e

−1
V , Yd,V ]

is a monomorphism if and only if G = (Z/2)k for some k.
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Next we want to illustrate the above proposition by citing a counterexample by Stong [Sto70b, p.
78]. He gives an example of a non-zero element in N

Z/4
3 that is mapped to zero by jN. See [Sto70b, p.

78]. Stong’s element is represented by the Z/4-manifold M defined as follows:

M := (D3 × {0, 1})/ ∼ ∼= RP 3 q RP 3.

Here D3 denotes the disk in R3 with boundary S2 and the equivalence relation ∼ on the product is
given by (x, k) ∼ (−x, k) for x ∈ S2, k ∈ {0, 1}. The group Z/4 = {0, 1, 2, 3} acts on M via

Z/4×M → M

(z, (x, k)) 7→ ((−1)b
z+k
2 cx, (−1)zk +

(−1)z+1 + 1

2
).

(Note that (−1)zk+ (−1)z+1+1
2 is nothing but the mod 2 value of z + k.) The action is fixed point

free, since the generator 1 ∈ Z/4 sends all points in one connected component (D3 × {0})/ ∼ to
points in the other connected component (D3×{1})/ ∼ and vice versa. So M is closed and without
fixed points, hence

jN([M ]) = 0 ∈ N3[A,P].

On the other hand, Stong proceeds to show that M is not null-bordant; see [Sto70b, p. 79].

4.2 Homotopical failure
The map jMO : MOG

n [A] → MOG
n [A,P] fails to be injective in general. We present an example of

this failure, (compare [Han05, Section 4]).
LetW denote the 2-dimensional Z/4-representation where we identifyW with C and Z/4 with the

fourth roots of unity and let them act by multiplication. When we view W as a Z/2 representation
via the injective map Z/2 → Z/4. It is isomorphic to V ⊕ V , where V denotes the non-trivial
one-dimensional representation of Z/2. We form the Z/4 bundle

π2 : W × {−1, 1} // {−1, 1},

where Z/4 acts via

Z/4× (W × {−1, 1}) → W × {−1, 1}
(z, (w, k)) 7→ (zw, z2k).

This vector bundle is classified by a map

{−1, 1} → BOZ/4(2)

and this induces, together with the inclusion of 0 in W , a map

S0 × {−1, 1} → SW × {−1, 1} → TOZ/4(2),

which represents an element x ∈ MO
Z/4
−2 . Because the bundle W × {−1, 1} is without fixed points,

this element is mapped to zero by the geometric fixed point map: φMO(x) = 0. But x is not the
zero element. The injective map Z/2 → Z/4 gives the restriction map:

res : MO
Z/4
−2 → MO

Z/2
−2 .

Since the Z/4-bundle W × {−1, 1} restricts to the Z/2-bundle (V ⊕ V ) × {−1, 1} over the trivial
Z/2-space {−1, 1}, the map

S0 × {−1, 1} → SV⊕V × {−1, 1} → TOZ/2(2)

represents the element res(x) = 2e2V ∈ MO
Z/2
−2 , which is non-zero. (Compare the description of

MO
Z/2
∗ in [Sin02, Theorems 2.7 and 2.8]. In the notation used there, the element e2V is e2σ.)

Together with Proposition 3.4.2 we get the following.
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Corollary 4.2.1. For G = Z/4

ι ◦ φMO : MO
Z/4
∗ → MO∗[eV , e

−1
V , Yd,V ]

is not a monomorphism.





5 Open Questions

In this chapter we collect a few questions, that one might ask in the context of the preceding chapters.

5.1 Complex equivariant cobordism
Looking at the results discussed in Section 2.3 the following questions come to mind.
Question 5.1.1 (compare Proposition 2.3.2). For which types of groups G is the complex equivariant
Pontryagin–Thom map

ΩG
∗ → MUG

∗

a monomorphism? And for what groups is it a split monomorphism?
Question 5.1.2 (compare Proposition 2.3.3). Is MUG

∗ a free MU∗-module concentrated in even
degrees for every compact Lie group G?

Comezaña conjectures a positive answer [Com96, p. 342] and claims to have verified the state-
ment for the non-Abelian groups O(2) and the dihedral groups. The author does not know of any
counterexamples to the injectivity of the Pontryagin–Thom map, hence the following conjecture.

Conjecture 5.1.3. The complex equivariant Pontryagin–Thom map

PT : ΩG
∗ → MUG

∗

is a monomorphism for all compact Lie groups G.

Comezaña’s proof of the corresponding complex result for compact Abelian Lie group G relies
on an induction on the cyclic factors of G. This cannot be done with non-Abelian G.

5.2 Real equivariant cobordism

In view of the explicit description of NZ/2
∗ , MO

Z/2
∗ and the quotient MOG

∗ /N
G
∗ in [Sin02, Theorems

2.4, 2.7 and 2.8] (also compare Section 2.2 and 3.6) we can ask the corresponding questions for
G = Z/2× · · · × Z/2.
Question 5.2.1 (compare [Sin02, Theorem 2.4]). What are classes, such that MOG

∗ is generated over
NG

∗ (either additively or multiplicatively) by these classes and what is a complete set of relations?
Question 5.2.2 (compare [Sin02, Theorem 2.7]). By what classes is NG

∗ generated over NG
∗ (either

additively or multiplicatively) as a sub-ring of MOG
∗ ?

Question 5.2.3 (compare [Sin02, Theorem 2.8]). How can the quotient NG
∗ -module

MOG
∗ /N

G
∗

be described?
In view of our counterexamples we wonder in what respect Theorem 3.5.2 can fail.
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Question 5.2.4. For what groups G is the diagram

NG
∗

PT

��

φN // MO∗[e
−1
V , Yd,V ]

i

��

MOG
∗

ι◦φMO // MO∗[eV , e
−1
V , Yd,V ]

commutative and a pull-back (even if the maps fail to be injective)?
Analogous to the complex case it is natural to ask the following question.

Question 5.2.5 (compare Question 5.1.2). For what groups G is MOG
∗ a free MO∗-module?

In contrast to the corresponding complex case, already for the group G = Z/2, a finite Abelian
Lie group, MOG

∗ is not a free MO∗-module. This can be seen from Sinha’s description of MO
Z/2
∗

in [Sin02, Theorem 2.4]. Hence a real version of Proposition 2.3.3 cannot be expected and a proof
like Comezaña’s proof does not work in the real case.

The other question analogous to the complex case and another way in which Theorem 3.5.2 can
fail is the following.
Question 5.2.6 (compare Proposition 2.3.2). For what groups G is the real equivariant Pontrya-
gin–Thom map

PT : NG
∗ → MOG

∗

a monomorphism? And for what groups is it a split monomorphism?
Again Comezaña’s proof of the corresponding complex result [Com96, p. 342] for compact Abelian

Lie group G does not work here; it would also assume that MOG
∗ is a free MO∗-module, which fails

to be true in general in the real case (compare Question 5.2.5).
Not being concerned about the splitting, the question of injectivity remains. The result by tom

Dieck (see Theorem 2.2.3 and [tD71, Theorem 2]) for G = Z/2 × · · · × Z/2 relies on localization
techniques, that only work for these groups; here Stong’s result [Sto70b, Propositions 14.2 and 14.3]
gives a definitive answer, (compare Proposition 4.1.1). So tom Dieck’s proof cannot be easily adapted
to more general G. Nonetheless one might conjecture (perhaps over-optimistically) a positive answer
to Question 5.2.6 for all compact Lie groups G.





Appendix

List of categories
Whenever the homotopy categories of a category C is defined, it is denoted by hC . Similarly
whenever weak equivalences are defined, the resulting localized category C will be denoted by hC .
For two objects X and Y in a category C we denote the set of morphisms between X and Y by
C (X,Y ).

Ab the category of Abelian groups

GPU the category of G-prespectra indexed on a G-universe U

GP the category of G-prespectra (universe implicit)

GT the category of based G-spaces and G-maps

GS U the category of G-spectra indexed on a G-universe U

GS the category of G-spectra (universe implicit)

GV the category of G-vector bundles

IO(G,U) the category of indexing spaces in a G-universe U

IO(G) the category of indexing spaces (universe implicit)

S the category of spectra

T the category of based compactly generated spaces and continuous maps

U the category of (unbased) compactly generated spaces and continuous maps

Ω-GS U the category of Ω-G-spectra indexed on a G-universe U

Ω-GS the category of Ω-G-spectra (universe implicit)
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