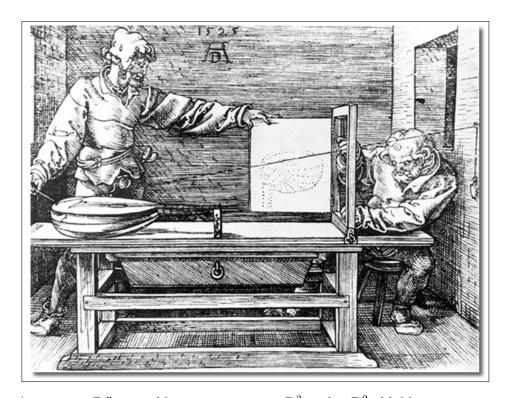
Übungsaufgaben zur Vorlesung Panorama der Mathematik

Dr. Moritz Firsching Sommersemester 2017

Blatt 5 Donnerstag, 9.III.2017



ALBRECHT DÜRER erklärt, wie man vom \mathbb{R}^3 in den \mathbb{R}^2 abbildet. "Underweysung der Messung, mit dem Zirckel und Richtscheyt, in Linien, Ebenen unnd gantzen corporen", 1525

Aufgabe 16 (Charakterisierung Injektivität / Surjektivität)

Es sei $f \colon X \to Y$ und $g \colon Y \to Z$ Abbildungen zwischen den Mengen X, Y und Z. Welche der folgenden Aussagen sind wahr?

- (i) Wenn f injektiv, dann ist auch $g \circ f$ injektiv.
- (ii) Wenn g injektiv, dann ist auch $g \circ f$ injektiv.
- (iii) Wenn f surjektiv, dann ist auch $g \circ f$ surjektiv.
- (iv) Wenn g surjektiv, dann ist auch $g \circ f$ surjektiv.
- (v) Wenn f injektiv und g injektiv, dann ist $g \circ f$ injektiv.
- (vi) Wenn f surjektiv und g surjektiv, dann ist $g \circ f$ surjektiv.
- (vii) Wenn f injektiv und g surjektiv, dann ist $g \circ f$ bijektiv.
- (viii) Wenn f surjektiv und g injektiv, dann ist $g \circ f$ bijektiv.

Zeigen, dass folgende Aussagen äquivalent sind:

- 1. Die Abbildung f ist injektiv, das heißt für alle $a,b\in X$ gilt: $f(a)=f(b)\Rightarrow a=b$
- 2. Es gibt eine Abbildung $h: Y \to X$, so dass $h \circ f$ die Identitätsabbildung auf X ist (oder es gilt $X = \emptyset$).

Können Sie eine ähnliche Charakterisierung von Surjektivität finden?

Aufgabe 17 (Abbildungen endlicher Mengen)

Wir betrachten die leere Menge \emptyset , die Menge $X := \{1\}$ die Menge $Y := \{1,2\}$ und die Menge $Z := \{1,2,3,4,5\}$. Wieviele Abbildungen zwischen jeweils zwei dieser Mengen gibt es? Wie viele davon sind surjektiv, wieviele injektiv und wieviele bijektiv?

alle									injektiv
	Ø	$\mid X$	Y			Ø	$\mid X$	$\mid Y$	$\mid Z \mid$
Ø					Ø				
\overline{X}					\overline{X}				
\overline{Y}					\overline{Y}				
\overline{Z}					\overline{Z}				
	Ø	$\mid X$	$\mid Y$			Ø	$\mid X$	$\mid Y$	
Ø					Ø				
\overline{X}					\overline{X}				
\overline{Y}					\overline{Y}				
\overline{Z}					\overline{Z}				
1111									

surjektiv bijektiv

Wir definieren $M_k := \{1, 2, ..., k\}$ für eine natürliche Zahl k. Dann gilt $M_0 = \emptyset$, $M_1 = X$ und $M_2 = Y$ und $M_3 = Z$. Es sei

- A(n,k) die Menge der Abbildungen $A_n \to A_k$,
- S(n,k) die Menge der surjektiven Abbildungen $A_n \to A_k$,
- I(n,k) die Menge der injektiven Abbildungen $A_n \hookrightarrow A_k$,
- B(n,k) die Menge der bijektiven Abbildungen $A_n \to A_k$.

Für welche dieser Mengen können Sie die Mächtigkeit bestimmen?

Aufgabe 18 (Abbildungen im Alltag)

Finden sie einige Beispiele für alltägliche Mengen und Abbildungen zwischen ihnen. Untersuchen Sie jeweils ob die Abbildungen surjektiv, injektiv oder bijektiv sind.