Documentation

Mathlib.Analysis.Analytic.Within

Properties of analyticity restricted to a set #

From Mathlib.Analysis.Analytic.Basic, we have the definitions

  1. AnalyticWithinAt ๐•œ f s x means a power series at x converges to f on ๐“[insert x s] x.
  2. AnalyticWithinOn ๐•œ f s t means โˆ€ x โˆˆ t, AnalyticWithinAt ๐•œ f s x.

This means there exists an extension of f which is analytic and agrees with f on s โˆช {x}, but f is allowed to be arbitrary elsewhere. Requiring ContinuousWithinAt is essential if x โˆ‰ s: it is required for composition and smoothness to follow without extra hypotheses (we could alternately require convergence at x even if x โˆ‰ s).

Here we prove basic properties of these definitions. Where convenient we assume completeness of the ambient space, which allows us to related AnalyticWithinAt to analyticity of a local extension.

Basic properties #

theorem analyticWithinAt_of_singleton_mem {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {s : Set E} {x : E} (h : {x} โˆˆ nhdsWithin x s) :
AnalyticWithinAt ๐•œ f s x

AnalyticWithinAt is trivial if {x} โˆˆ ๐“[s] x

theorem AnalyticWithinOn.continuousOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {s : Set E} (h : AnalyticWithinOn ๐•œ f s) :
theorem analyticWithinOn_of_locally_analyticWithinOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {s : Set E} (h : โˆ€ x โˆˆ s, โˆƒ (u : Set E), IsOpen u โˆง x โˆˆ u โˆง AnalyticWithinOn ๐•œ f (s โˆฉ u)) :
AnalyticWithinOn ๐•œ f s

If f is AnalyticWithinOn near each point in a set, it is AnalyticWithinOn the set

theorem IsOpen.analyticWithinOn_iff_analyticOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {s : Set E} (hs : IsOpen s) :
AnalyticWithinOn ๐•œ f s โ†” AnalyticOn ๐•œ f s

On open sets, AnalyticOn and AnalyticWithinOn coincide

Equivalence to analyticity of a local extension #

We show that HasFPowerSeriesWithinOnBall, HasFPowerSeriesWithinAt, and AnalyticWithinAt are equivalent to the existence of a local extension with full analyticity. We do not yet show a result for AnalyticWithinOn, as this requires a bit more work to show that local extensions can be stitched together.

theorem hasFPowerSeriesWithinOnBall_iff_exists_hasFPowerSeriesOnBall {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [CompleteSpace F] {f : E โ†’ F} {p : FormalMultilinearSeries ๐•œ E F} {s : Set E} {x : E} {r : ENNReal} :
HasFPowerSeriesWithinOnBall f p s x r โ†” โˆƒ (g : E โ†’ F), Set.EqOn f g (insert x s โˆฉ EMetric.ball x r) โˆง HasFPowerSeriesOnBall g p x r

f has power series p at x iff some local extension of f has that series

theorem hasFPowerSeriesWithinAt_iff_exists_hasFPowerSeriesAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [CompleteSpace F] {f : E โ†’ F} {p : FormalMultilinearSeries ๐•œ E F} {s : Set E} {x : E} :
HasFPowerSeriesWithinAt f p s x โ†” โˆƒ (g : E โ†’ F), f =แถ [nhdsWithin x (insert x s)] g โˆง HasFPowerSeriesAt g p x

f has power series p at x iff some local extension of f has that series

theorem analyticWithinAt_iff_exists_analyticAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [CompleteSpace F] {f : E โ†’ F} {s : Set E} {x : E} :
AnalyticWithinAt ๐•œ f s x โ†” โˆƒ (g : E โ†’ F), f =แถ [nhdsWithin x (insert x s)] g โˆง AnalyticAt ๐•œ g x

f is analytic within s at x iff some local extension of f is analytic at x

theorem analyticWithinAt_iff_exists_analyticAt' {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [CompleteSpace F] {f : E โ†’ F} {s : Set E} {x : E} :
AnalyticWithinAt ๐•œ f s x โ†” โˆƒ (g : E โ†’ F), f x = g x โˆง Set.EqOn f g (insert x s) โˆง AnalyticAt ๐•œ g x

f is analytic within s at x iff some local extension of f is analytic at x. In this version, we make sure that the extension coincides with f on all of insert x s.

theorem AnalyticWithinAt.exists_analyticAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [CompleteSpace F] {f : E โ†’ F} {s : Set E} {x : E} :
AnalyticWithinAt ๐•œ f s x โ†’ โˆƒ (g : E โ†’ F), f x = g x โˆง Set.EqOn f g (insert x s) โˆง AnalyticAt ๐•œ g x

Alias of the forward direction of analyticWithinAt_iff_exists_analyticAt'.


f is analytic within s at x iff some local extension of f is analytic at x. In this version, we make sure that the extension coincides with f on all of insert x s.

Congruence #

theorem HasFPowerSeriesWithinOnBall.congr {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {g : E โ†’ F} {p : FormalMultilinearSeries ๐•œ E F} {s : Set E} {x : E} {r : ENNReal} (h : HasFPowerSeriesWithinOnBall f p s x r) (h' : Set.EqOn g f (s โˆฉ EMetric.ball x r)) (h'' : g x = f x) :
theorem HasFPowerSeriesWithinAt.congr {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {g : E โ†’ F} {p : FormalMultilinearSeries ๐•œ E F} {s : Set E} {x : E} (h : HasFPowerSeriesWithinAt f p s x) (h' : g =แถ [nhdsWithin x s] f) (h'' : g x = f x) :
theorem AnalyticWithinAt.congr_of_eventuallyEq {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {g : E โ†’ F} {s : Set E} {x : E} (hf : AnalyticWithinAt ๐•œ f s x) (hs : g =แถ [nhdsWithin x s] f) (hx : g x = f x) :
AnalyticWithinAt ๐•œ g s x
theorem AnalyticWithinAt.congr {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {g : E โ†’ F} {s : Set E} {x : E} (hf : AnalyticWithinAt ๐•œ f s x) (hs : Set.EqOn g f s) (hx : g x = f x) :
AnalyticWithinAt ๐•œ g s x
theorem AnalyticWithinOn.congr {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {g : E โ†’ F} {s : Set E} (hf : AnalyticWithinOn ๐•œ f s) (hs : Set.EqOn g f s) :
AnalyticWithinOn ๐•œ g s

Monotonicity w.r.t. the set we're analytic within #

theorem AnalyticWithinOn.mono {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {s : Set E} {t : Set E} (h : AnalyticWithinOn ๐•œ f t) (hs : s โŠ† t) :
AnalyticWithinOn ๐•œ f s

Analyticity within respects composition #

Currently we require CompleteSpaces to use equivalence to local extensions, but this is not essential.

theorem AnalyticWithinAt.comp {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} {G : Type u_4} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [NormedAddCommGroup G] [NormedSpace ๐•œ G] [CompleteSpace F] [CompleteSpace G] {f : F โ†’ G} {g : E โ†’ F} {s : Set F} {t : Set E} {x : E} (hf : AnalyticWithinAt ๐•œ f s (g x)) (hg : AnalyticWithinAt ๐•œ g t x) (h : Set.MapsTo g t s) :
AnalyticWithinAt ๐•œ (f โˆ˜ g) t x
theorem AnalyticWithinOn.comp {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} {G : Type u_4} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [NormedAddCommGroup G] [NormedSpace ๐•œ G] [CompleteSpace F] [CompleteSpace G] {f : F โ†’ G} {g : E โ†’ F} {s : Set F} {t : Set E} (hf : AnalyticWithinOn ๐•œ f s) (hg : AnalyticWithinOn ๐•œ g t) (h : Set.MapsTo g t s) :
AnalyticWithinOn ๐•œ (f โˆ˜ g) t

Analyticity within implies smoothness #

theorem AnalyticWithinAt.contDiffWithinAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [CompleteSpace F] {f : E โ†’ F} {s : Set E} {x : E} (h : AnalyticWithinAt ๐•œ f s x) {n : โ„•โˆž} :
ContDiffWithinAt ๐•œ n f s x
theorem AnalyticWithinOn.contDiffOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [CompleteSpace F] {f : E โ†’ F} {s : Set E} (h : AnalyticWithinOn ๐•œ f s) {n : โ„•โˆž} :
ContDiffOn ๐•œ n f s

Analyticity within respects products #

theorem HasFPowerSeriesWithinOnBall.prod {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} {G : Type u_4} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [NormedAddCommGroup G] [NormedSpace ๐•œ G] {e : E} {f : E โ†’ F} {g : E โ†’ G} {s : Set E} {r : ENNReal} {t : ENNReal} {p : FormalMultilinearSeries ๐•œ E F} {q : FormalMultilinearSeries ๐•œ E G} (hf : HasFPowerSeriesWithinOnBall f p s e r) (hg : HasFPowerSeriesWithinOnBall g q s e t) :
HasFPowerSeriesWithinOnBall (fun (x : E) => (f x, g x)) (p.prod q) s e (min r t)
theorem HasFPowerSeriesWithinAt.prod {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} {G : Type u_4} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [NormedAddCommGroup G] [NormedSpace ๐•œ G] {e : E} {f : E โ†’ F} {g : E โ†’ G} {s : Set E} {p : FormalMultilinearSeries ๐•œ E F} {q : FormalMultilinearSeries ๐•œ E G} (hf : HasFPowerSeriesWithinAt f p s e) (hg : HasFPowerSeriesWithinAt g q s e) :
HasFPowerSeriesWithinAt (fun (x : E) => (f x, g x)) (p.prod q) s e
theorem AnalyticWithinAt.prod {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} {G : Type u_4} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [NormedAddCommGroup G] [NormedSpace ๐•œ G] {e : E} {f : E โ†’ F} {g : E โ†’ G} {s : Set E} (hf : AnalyticWithinAt ๐•œ f s e) (hg : AnalyticWithinAt ๐•œ g s e) :
AnalyticWithinAt ๐•œ (fun (x : E) => (f x, g x)) s e
theorem AnalyticWithinOn.prod {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} {G : Type u_4} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [NormedAddCommGroup G] [NormedSpace ๐•œ G] {f : E โ†’ F} {g : E โ†’ G} {s : Set E} (hf : AnalyticWithinOn ๐•œ f s) (hg : AnalyticWithinOn ๐•œ g s) :
AnalyticWithinOn ๐•œ (fun (x : E) => (f x, g x)) s