Documentation

Mathlib.Condensed.Light.Basic

Light condensed objects #

This file defines the category of light condensed objects in a category C, following the work of Clausen-Scholze (see https://www.youtube.com/playlist?list=PLx5f8IelFRgGmu6gmL-Kf_Rl_6Mm7juZO).

def LightCondensed (C : Type w) [CategoryTheory.Category.{v, w} C] :
Type (max (max (max (u + 1) w) u) v)

LightCondensed.{u} C is the category of light condensed objects in a category C, which are defined as sheaves on LightProfinite.{u} with respect to the coherent Grothendieck topology.

Equations
Instances For
    @[reducible, inline]
    abbrev LightCondSet :
    Type (u + 1)

    Light condensed sets. Because LightProfinite is an essentially small category, we don't need the same universe bump as in CondensedSet.

    Equations
    Instances For
      theorem LightCondensed.hom_ext_iff {C : Type w} [CategoryTheory.Category.{v, w} C] {X : LightCondensed C} {Y : LightCondensed C} {f : X Y} {g : X Y} :
      f = g ∀ (S : LightProfiniteᵒᵖ), f.val.app S = g.val.app S
      theorem LightCondensed.hom_ext {C : Type w} [CategoryTheory.Category.{v, w} C] {X : LightCondensed C} {Y : LightCondensed C} (f : X Y) (g : X Y) (h : ∀ (S : LightProfiniteᵒᵖ), f.val.app S = g.val.app S) :
      f = g
      @[simp]
      theorem LightCondSet.hom_naturality_apply {X : LightCondSet} {Y : LightCondSet} (f : X Y) {S : LightProfiniteᵒᵖ} {T : LightProfiniteᵒᵖ} (g : S T) (x : X.val.obj S) :
      f.val.app T (X.val.map g x) = Y.val.map g (f.val.app S x)