Documentation

Batteries.Data.RBMap.Alter

Path operations; modify and alter #

This develops the necessary theorems to construct the modify and alter functions on RBSet using path operations for in-place modification of an RBTree.

path balance #

def Batteries.RBNode.OnRoot {α : Type u_1} (p : αProp) :

Asserts that property p holds on the root of the tree, if any.

Equations
@[inline]

Same as fill but taking its arguments in a pair for easier composition with zoom.

Equations
theorem Batteries.RBNode.Path.zoom_fill {α✝ : Type u_1} {cut : α✝Ordering} {t : Batteries.RBNode α✝} {path : Batteries.RBNode.Path α✝} {t' : Batteries.RBNode α✝} {path' : Batteries.RBNode.Path α✝} (H : Batteries.RBNode.zoom cut t path = (t', path')) :
path.fill t = path'.fill t'

The balance invariant for a path. path.Balanced c₀ n₀ c n means that path is a red-black tree with balance invariant c₀, n₀, but it has a "hole" where a tree with balance invariant c, n has been removed. The defining property is Balanced.fill: if path.Balanced c₀ n₀ c n and you fill the hole with a tree satisfying t.Balanced c n, then (path.fill t).Balanced c₀ n₀ .

theorem Batteries.RBNode.Path.Balanced.fill {α : Type u_1} {c₀ : Batteries.RBColor} {n₀ : Nat} {c : Batteries.RBColor} {n : Nat} {path : Batteries.RBNode.Path α} {t : Batteries.RBNode α} :
Batteries.RBNode.Path.Balanced c₀ n₀ path c nt.Balanced c n(path.fill t).Balanced c₀ n₀

The defining property of a balanced path: If path is a c₀,n₀ tree with a c,n hole, then filling the hole with a c,n tree yields a c₀,n₀ tree.

theorem Batteries.RBNode.Balanced.zoom {α✝ : Type u_1} {cut : α✝Ordering} {t : Batteries.RBNode α✝} {path : Batteries.RBNode.Path α✝} {t' : Batteries.RBNode α✝} {path' : Batteries.RBNode.Path α✝} {c₀ : Batteries.RBColor} {n₀ : Nat} {c : Batteries.RBColor} {n : Nat} :
t.Balanced c nBatteries.RBNode.Path.Balanced c₀ n₀ path c nBatteries.RBNode.zoom cut t path = (t', path')∃ (c : Batteries.RBColor), ∃ (n : Nat), t'.Balanced c n Batteries.RBNode.Path.Balanced c₀ n₀ path' c n
theorem Batteries.RBNode.Path.Balanced.ins {α : Type u_1} {c₀ : Batteries.RBColor} {n₀ : Nat} {c : Batteries.RBColor} {n : Nat} {t : Batteries.RBNode α} {path : Batteries.RBNode.Path α} (hp : Batteries.RBNode.Path.Balanced c₀ n₀ path c n) (ht : Batteries.RBNode.RedRed (c = Batteries.RBColor.red) t n) :
∃ (n : Nat), (path.ins t).Balanced Batteries.RBColor.black n
theorem Batteries.RBNode.Path.Balanced.insertNew {α : Type u_1} {c : Batteries.RBColor} {n : Nat} {v : α} {path : Batteries.RBNode.Path α} (H : Batteries.RBNode.Path.Balanced c n path Batteries.RBColor.black 0) :
∃ (n : Nat), (path.insertNew v).Balanced Batteries.RBColor.black n
theorem Batteries.RBNode.Path.Balanced.del {α : Type u_1} {c₀ : Batteries.RBColor} {n₀ : Nat} {c : Batteries.RBColor} {n : Nat} {c' : Batteries.RBColor} {t : Batteries.RBNode α} {path : Batteries.RBNode.Path α} (hp : Batteries.RBNode.Path.Balanced c₀ n₀ path c n) (ht : Batteries.RBNode.DelProp c' t n) (hc : c = Batteries.RBColor.blackc' Batteries.RBColor.red) :
∃ (n : Nat), (path.del t c').Balanced Batteries.RBColor.black n

The property of a path returned by t.zoom cut. Each of the parents visited along the path have the appropriate ordering relation to the cut.

Equations
theorem Batteries.RBNode.Path.zoom_zoomed₂ {α✝ : Type u_1} {cut : α✝Ordering} {t : Batteries.RBNode α✝} {path : Batteries.RBNode.Path α✝} {t' : Batteries.RBNode α✝} {path' : Batteries.RBNode.Path α✝} (e : Batteries.RBNode.zoom cut t path = (t', path')) (hp : Batteries.RBNode.Path.Zoomed cut path) :
def Batteries.RBNode.Path.RootOrdered {α : Type u_1} (cmp : ααOrdering) :

path.RootOrdered cmp v is true if v would be able to fit into the hole without violating the ordering invariant.

Equations
theorem Batteries.RBNode.Path.Zoomed.toRootOrdered {α : Type u_1} {v : α} {cmp : ααOrdering} {path : Batteries.RBNode.Path α} :
def Batteries.RBNode.Path.Ordered {α : Type u_1} (cmp : ααOrdering) :

The ordering invariant for a Path.

Equations
theorem Batteries.RBNode.Path.Ordered.insertNew {α : Type u_1} {cmp : ααOrdering} {v : α} {path : Batteries.RBNode.Path α} (hp : Batteries.RBNode.Path.Ordered cmp path) (vp : Batteries.RBNode.Path.RootOrdered cmp path v) :
Batteries.RBNode.Ordered cmp (path.insertNew v)

alter #

theorem Batteries.RBNode.Ordered.alter {α : Type u_1} {cut : αOrdering} {f : Option αOption α} {cmp : ααOrdering} {t : Batteries.RBNode α} (H : ∀ {x : α} {t' : Batteries.RBNode α} {p : Batteries.RBNode.Path α}, Batteries.RBNode.zoom cut t = (t', p)f t'.root? = some xBatteries.RBNode.Path.RootOrdered cmp p x Batteries.RBNode.OnRoot (Batteries.RBNode.cmpEq cmp x) t') (h : Batteries.RBNode.Ordered cmp t) :

The alter function preserves the ordering invariants.

theorem Batteries.RBNode.Balanced.alter {α : Type u_1} {c : Batteries.RBColor} {n : Nat} {cut : αOrdering} {f : Option αOption α} {t : Batteries.RBNode α} (h : t.Balanced c n) :
∃ (c : Batteries.RBColor), ∃ (n : Nat), (Batteries.RBNode.alter cut f t).Balanced c n

The alter function preserves the balance invariants.

theorem Batteries.RBNode.modify_eq_alter {α : Type u_1} {cut : αOrdering} {f : αα} (t : Batteries.RBNode α) :
theorem Batteries.RBNode.Ordered.modify {α : Type u_1} {cut : αOrdering} {cmp : ααOrdering} {f : αα} {t : Batteries.RBNode α} (H : Batteries.RBNode.OnRoot (fun (x : α) => Batteries.RBNode.cmpEq cmp (f x) x) (Batteries.RBNode.zoom cut t).fst) (h : Batteries.RBNode.Ordered cmp t) :

The modify function preserves the ordering invariants.

theorem Batteries.RBNode.Balanced.modify {α : Type u_1} {c : Batteries.RBColor} {n : Nat} {cut : αOrdering} {f : αα} {t : Batteries.RBNode α} (h : t.Balanced c n) :
∃ (c : Batteries.RBColor), ∃ (n : Nat), (Batteries.RBNode.modify cut f t).Balanced c n

The modify function preserves the balance invariants.

theorem Batteries.RBNode.WF.alter {α : Type u_1} {cut : αOrdering} {f : Option αOption α} {cmp : ααOrdering} {t : Batteries.RBNode α} (H : ∀ {x : α} {t' : Batteries.RBNode α} {p : Batteries.RBNode.Path α}, Batteries.RBNode.zoom cut t = (t', p)f t'.root? = some xBatteries.RBNode.Path.RootOrdered cmp p x Batteries.RBNode.OnRoot (Batteries.RBNode.cmpEq cmp x) t') (h : Batteries.RBNode.WF cmp t) :
theorem Batteries.RBNode.WF.modify {α : Type u_1} {cut : αOrdering} {cmp : ααOrdering} {f : αα} {t : Batteries.RBNode α} (H : Batteries.RBNode.OnRoot (fun (x : α) => Batteries.RBNode.cmpEq cmp (f x) x) (Batteries.RBNode.zoom cut t).fst) (h : Batteries.RBNode.WF cmp t) :
theorem Batteries.RBNode.find?_eq_zoom {α : Type u_1} {cut : αOrdering} {t : Batteries.RBNode α} (p : Batteries.RBNode.Path α := Batteries.RBNode.Path.root) :
theorem Batteries.RBSet.ModifyWF.of_eq {α : Type u_1} {cmp : ααOrdering} {cut : αOrdering} {f : αα} {t : Batteries.RBSet α cmp} (H : ∀ {x : α}, Batteries.RBNode.find? cut t.val = some xBatteries.RBNode.cmpEq cmp (f x) x) :
t.ModifyWF cut f

A sufficient condition for ModifyWF is that the new element compares equal to the original.

def Batteries.RBMap.modify {α : Type u_1} {β : Type u_2} {cmp : ααOrdering} (t : Batteries.RBMap α β cmp) (k : α) (f : ββ) :
Batteries.RBMap α β cmp

O(log n). In-place replace the corresponding to key k. This takes the element out of the tree while f runs, so it uses the element linearly if t is unshared.

Equations
def Batteries.RBMap.alter.adapt {α : Type u_1} {β : Type u_2} (k : α) (f : Option βOption β) :
Option (α × β)Option (α × β)

Auxiliary definition for alter.

Equations
@[specialize #[]]
def Batteries.RBMap.alter {α : Type u_1} {β : Type u_2} {cmp : ααOrdering} (t : Batteries.RBMap α β cmp) (k : α) (f : Option βOption β) :
Batteries.RBMap α β cmp

O(log n). alterP cut f t simultaneously handles inserting, erasing and replacing an element using a function f : Option α → Option α. It is passed the result of t.findP? cut and can either return none to remove the element or some a to replace/insert the element with a (which must have the same ordering properties as the original element).

The element is used linearly if t is unshared.

The AlterWF assumption is required because f may change the ordering properties of the element, which would break the invariants.

Equations