Conjugacy of group elements #
See also MulAut.conj
and Quandle.conj
.
theorem
conj_injective
{α : Type u}
[Group α]
{x : α}
:
Function.Injective fun (g : α) => x * g * x⁻¹
The setoid of the relation IsConj
iff there is a unit u
such that u * x = y * u
Equations
- IsConj.setoid α = { r := IsConj, iseqv := ⋯ }
Instances For
The quotient type of conjugacy classes of a group.
Equations
- ConjClasses α = Quotient (IsConj.setoid α)
Instances For
The canonical quotient map from a monoid α
into the ConjClasses
of α
Equations
- ConjClasses.mk a = ⟦a⟧
Instances For
Equations
- ConjClasses.instInhabited = { default := ⟦1⟧ }
theorem
ConjClasses.mk_eq_mk_iff_isConj
{α : Type u}
[Monoid α]
{a b : α}
:
ConjClasses.mk a = ConjClasses.mk b ↔ IsConj a b
theorem
ConjClasses.quot_mk_eq_mk
{α : Type u}
[Monoid α]
(a : α)
:
Quot.mk (⇑(IsConj.setoid α)) a = ConjClasses.mk a
theorem
ConjClasses.forall_isConj
{α : Type u}
[Monoid α]
{p : ConjClasses α → Prop}
:
(∀ (a : ConjClasses α), p a) ↔ ∀ (a : α), p (ConjClasses.mk a)
Equations
- ConjClasses.instOne = { one := ⟦1⟧ }
theorem
ConjClasses.exists_rep
{α : Type u}
[Monoid α]
(a : ConjClasses α)
:
∃ (a0 : α), ConjClasses.mk a0 = a
def
ConjClasses.map
{α : Type u}
{β : Type v}
[Monoid α]
[Monoid β]
(f : α →* β)
:
ConjClasses α → ConjClasses β
A MonoidHom
maps conjugacy classes of one group to conjugacy classes of another.
Equations
- ConjClasses.map f = Quotient.lift (ConjClasses.mk ∘ ⇑f) ⋯
Instances For
theorem
ConjClasses.map_surjective
{α : Type u}
{β : Type v}
[Monoid α]
[Monoid β]
{f : α →* β}
(hf : Function.Surjective ⇑f)
:
@[instance 900]
instance
ConjClasses.instDecidableEqOfDecidableRelIsConj
{α : Type u}
[Monoid α]
[DecidableRel IsConj]
:
Equations
- ConjClasses.instDecidableEqOfDecidableRelIsConj = inferInstanceAs (DecidableEq (Quotient (IsConj.setoid α)))
The bijection between a CommGroup
and its ConjClasses
.
Equations
- ConjClasses.mkEquiv = { toFun := ConjClasses.mk, invFun := Quotient.lift id ⋯, left_inv := ⋯, right_inv := ⋯ }
Instances For
Given an element a
, conjugatesOf a
is the set of conjugates.
Equations
- conjugatesOf a = {b : α | IsConj a b}
Instances For
theorem
isConj_iff_conjugatesOf_eq
{α : Type u}
[Monoid α]
{a b : α}
:
IsConj a b ↔ conjugatesOf a = conjugatesOf b
Given a conjugacy class a
, carrier a
is the set it represents.
Equations
- ConjClasses.carrier = Quotient.lift conjugatesOf ⋯
Instances For
theorem
ConjClasses.mem_carrier_iff_mk_eq
{α : Type u}
[Monoid α]
{a : α}
{b : ConjClasses α}
:
a ∈ b.carrier ↔ ConjClasses.mk a = b