Additional facts about modules over algebras. #
@[simp]
theorem
LinearMap.restrictScalarsLinearMap_apply
(k : Type u_1)
[CommSemiring k]
(A : Type u_2)
[Semiring A]
[Algebra k A]
(M : Type u_3)
[AddCommMonoid M]
[Module k M]
[Module A M]
[IsScalarTower k A M]
(N : Type u_4)
[AddCommMonoid N]
[Module k N]
[Module A N]
[IsScalarTower k A N]
(fₗ : M →ₗ[A] N)
:
(LinearMap.restrictScalarsLinearMap k A M N) fₗ = ↑k fₗ
def
LinearMap.restrictScalarsLinearMap
(k : Type u_1)
[CommSemiring k]
(A : Type u_2)
[Semiring A]
[Algebra k A]
(M : Type u_3)
[AddCommMonoid M]
[Module k M]
[Module A M]
[IsScalarTower k A M]
(N : Type u_4)
[AddCommMonoid N]
[Module k N]
[Module A N]
[IsScalarTower k A N]
:
Restriction of scalars for linear maps between modules over a k
-algebra is itself k
-linear.
Equations
- LinearMap.restrictScalarsLinearMap k A M N = { toFun := ↑k, map_add' := ⋯, map_smul' := ⋯ }