Documentation

Mathlib.AlgebraicGeometry.EllipticCurve.NormalForms

Some normal forms of elliptic curves #

This file defines some normal forms of Weierstrass equations of elliptic curves.

Main definitions and results #

The following normal forms are in [silverman2009], section III.1, page 42.

The following normal forms are in [silverman2009], Appendix A, Proposition 1.1.

References #

Tags #

elliptic curve, weierstrass equation, normal form

Normal forms of characteristic ≠ 2 #

A WeierstrassCurve is in normal form of characteristic ≠ 2, if its $a_1, a_3 = 0$. In other words it is $Y^2 = X^3 + a_2X^2 + a_4X + a_6$.

  • a₁ : W.a₁ = 0
  • a₃ : W.a₃ = 0
Instances
    theorem WeierstrassCurve.isCharNeTwoNF_iff {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) :
    W.IsCharNeTwoNF W.a₁ = 0 W.a₃ = 0
    @[simp]
    theorem WeierstrassCurve.a₁_of_isCharNeTwoNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharNeTwoNF] :
    W.a₁ = 0
    @[simp]
    theorem WeierstrassCurve.a₃_of_isCharNeTwoNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharNeTwoNF] :
    W.a₃ = 0
    @[simp]
    theorem WeierstrassCurve.b₂_of_isCharNeTwoNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharNeTwoNF] :
    W.b₂ = 4 * W.a₂
    @[simp]
    theorem WeierstrassCurve.b₄_of_isCharNeTwoNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharNeTwoNF] :
    W.b₄ = 2 * W.a₄
    @[simp]
    theorem WeierstrassCurve.b₆_of_isCharNeTwoNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharNeTwoNF] :
    W.b₆ = 4 * W.a₆
    @[simp]
    theorem WeierstrassCurve.b₈_of_isCharNeTwoNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharNeTwoNF] :
    W.b₈ = 4 * W.a₂ * W.a₆ - W.a₄ ^ 2
    @[simp]
    theorem WeierstrassCurve.c₄_of_isCharNeTwoNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharNeTwoNF] :
    W.c₄ = 16 * W.a₂ ^ 2 - 48 * W.a₄
    @[simp]
    theorem WeierstrassCurve.c₆_of_isCharNeTwoNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharNeTwoNF] :
    W.c₆ = -64 * W.a₂ ^ 3 + 288 * W.a₂ * W.a₄ - 864 * W.a₆
    @[simp]
    theorem WeierstrassCurve.Δ_of_isCharNeTwoNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharNeTwoNF] :
    W = -64 * W.a₂ ^ 3 * W.a₆ + 16 * W.a₂ ^ 2 * W.a₄ ^ 2 - 64 * W.a₄ ^ 3 - 432 * W.a₆ ^ 2 + 288 * W.a₂ * W.a₄ * W.a₆

    There is an explicit change of variables of a WeierstrassCurve to a normal form of characteristic ≠ 2, provided that 2 is invertible in the ring.

    Equations
    • W.toCharNeTwoNF = { u := 1, r := 0, s := 2 * -W.a₁, t := 2 * -W.a₃ }
    Instances For
      @[simp]
      theorem WeierstrassCurve.toCharNeTwoNF_u {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [Invertible 2] :
      W.toCharNeTwoNF.u = 1
      @[simp]
      theorem WeierstrassCurve.toCharNeTwoNF_t {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [Invertible 2] :
      W.toCharNeTwoNF.t = 2 * -W.a₃
      @[simp]
      theorem WeierstrassCurve.toCharNeTwoNF_r {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [Invertible 2] :
      W.toCharNeTwoNF.r = 0
      @[simp]
      theorem WeierstrassCurve.toCharNeTwoNF_s {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [Invertible 2] :
      W.toCharNeTwoNF.s = 2 * -W.a₁
      instance WeierstrassCurve.toCharNeTwoNF_spec {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [Invertible 2] :
      (W.variableChange W.toCharNeTwoNF).IsCharNeTwoNF
      Equations
      • =
      theorem WeierstrassCurve.exists_variableChange_isCharNeTwoNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [Invertible 2] :
      ∃ (C : WeierstrassCurve.VariableChange R), (W.variableChange C).IsCharNeTwoNF
      instance EllipticCurve.toCharNeTwoNF_spec {R : Type u_1} [CommRing R] (E : EllipticCurve R) [Invertible 2] :
      (E.variableChange E.toCharNeTwoNF).IsCharNeTwoNF
      Equations
      • =
      theorem EllipticCurve.exists_variableChange_isCharNeTwoNF {R : Type u_1} [CommRing R] (E : EllipticCurve R) [Invertible 2] :
      ∃ (C : WeierstrassCurve.VariableChange R), (E.variableChange C).IsCharNeTwoNF

      Short normal form #

      A WeierstrassCurve is in short normal form, if its $a_1, a_2, a_3 = 0$. In other words it is $Y^2 = X^3 + a_4X + a_6$.

      This is the normal form of characteristic ≠ 2 or 3, and also the normal form of characteristic = 3 and j = 0.

      • a₁ : W.a₁ = 0
      • a₂ : W.a₂ = 0
      • a₃ : W.a₃ = 0
      Instances
        theorem WeierstrassCurve.isShortNF_iff {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) :
        W.IsShortNF W.a₁ = 0 W.a₂ = 0 W.a₃ = 0
        instance WeierstrassCurve.isCharNeTwoNF_of_isShortNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsShortNF] :
        W.IsCharNeTwoNF
        Equations
        • =
        theorem WeierstrassCurve.a₁_of_isShortNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsShortNF] :
        W.a₁ = 0
        @[simp]
        theorem WeierstrassCurve.a₂_of_isShortNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsShortNF] :
        W.a₂ = 0
        theorem WeierstrassCurve.a₃_of_isShortNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsShortNF] :
        W.a₃ = 0
        theorem WeierstrassCurve.b₂_of_isShortNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsShortNF] :
        W.b₂ = 0
        theorem WeierstrassCurve.b₄_of_isShortNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsShortNF] :
        W.b₄ = 2 * W.a₄
        theorem WeierstrassCurve.b₆_of_isShortNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsShortNF] :
        W.b₆ = 4 * W.a₆
        theorem WeierstrassCurve.b₈_of_isShortNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsShortNF] :
        W.b₈ = -W.a₄ ^ 2
        theorem WeierstrassCurve.c₄_of_isShortNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsShortNF] :
        W.c₄ = -48 * W.a₄
        theorem WeierstrassCurve.c₆_of_isShortNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsShortNF] :
        W.c₆ = -864 * W.a₆
        theorem WeierstrassCurve.Δ_of_isShortNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsShortNF] :
        W = -16 * (4 * W.a₄ ^ 3 + 27 * W.a₆ ^ 2)
        theorem WeierstrassCurve.b₄_of_isShortNF_of_char_three {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsShortNF] [CharP R 3] :
        W.b₄ = -W.a₄
        theorem WeierstrassCurve.b₆_of_isShortNF_of_char_three {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsShortNF] [CharP R 3] :
        W.b₆ = W.a₆
        theorem WeierstrassCurve.c₄_of_isShortNF_of_char_three {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsShortNF] [CharP R 3] :
        W.c₄ = 0
        theorem WeierstrassCurve.c₆_of_isShortNF_of_char_three {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsShortNF] [CharP R 3] :
        W.c₆ = 0
        theorem WeierstrassCurve.Δ_of_isShortNF_of_char_three {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsShortNF] [CharP R 3] :
        W = -W.a₄ ^ 3
        theorem EllipticCurve.j_of_isShortNF {F : Type u_2} [Field F] (E : EllipticCurve F) [E.IsShortNF] :
        E.j = 6912 * E.a₄ ^ 3 / (4 * E.a₄ ^ 3 + 27 * E.a₆ ^ 2)
        @[simp]
        theorem EllipticCurve.j_of_isShortNF_of_char_three {F : Type u_2} [Field F] (E : EllipticCurve F) [E.IsShortNF] [CharP F 3] :
        E.j = 0

        There is an explicit change of variables of a WeierstrassCurve to a short normal form, provided that 2 and 3 are invertible in the ring. It is the composition of an explicit change of variables with WeierstrassCurve.toCharNeTwoNF.

        Equations
        • W.toShortNF = { u := 1, r := 3 * -(W.variableChange W.toCharNeTwoNF).a₂, s := 0, t := 0 }.comp W.toCharNeTwoNF
        Instances For
          instance WeierstrassCurve.toShortNF_spec {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [Invertible 2] [Invertible 3] :
          (W.variableChange W.toShortNF).IsShortNF
          Equations
          • =
          theorem WeierstrassCurve.exists_variableChange_isShortNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [Invertible 2] [Invertible 3] :
          ∃ (C : WeierstrassCurve.VariableChange R), (W.variableChange C).IsShortNF
          instance EllipticCurve.toShortNF_spec {R : Type u_1} [CommRing R] (E : EllipticCurve R) [Invertible 2] [Invertible 3] :
          (E.variableChange E.toShortNF).IsShortNF
          Equations
          • =
          theorem EllipticCurve.exists_variableChange_isShortNF {R : Type u_1} [CommRing R] (E : EllipticCurve R) [Invertible 2] [Invertible 3] :
          ∃ (C : WeierstrassCurve.VariableChange R), (E.variableChange C).IsShortNF

          Normal forms of characteristic = 3 and j ≠ 0 #

          A WeierstrassCurve is in normal form of characteristic = 3 and j ≠ 0, if its $a_1, a_3, a_4 = 0$. In other words it is $Y^2 = X^3 + a_2X^2 + a_6$.

          • a₁ : W.a₁ = 0
          • a₃ : W.a₃ = 0
          • a₄ : W.a₄ = 0
          Instances
            theorem WeierstrassCurve.isCharThreeJNeZeroNF_iff {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) :
            W.IsCharThreeJNeZeroNF W.a₁ = 0 W.a₃ = 0 W.a₄ = 0
            instance WeierstrassCurve.isCharNeTwoNF_of_isCharThreeJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] :
            W.IsCharNeTwoNF
            Equations
            • =
            theorem WeierstrassCurve.a₁_of_isCharThreeJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] :
            W.a₁ = 0
            theorem WeierstrassCurve.a₃_of_isCharThreeJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] :
            W.a₃ = 0
            @[simp]
            theorem WeierstrassCurve.a₄_of_isCharThreeJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] :
            W.a₄ = 0
            theorem WeierstrassCurve.b₂_of_isCharThreeJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] :
            W.b₂ = 4 * W.a₂
            theorem WeierstrassCurve.b₄_of_isCharThreeJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] :
            W.b₄ = 0
            theorem WeierstrassCurve.b₆_of_isCharThreeJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] :
            W.b₆ = 4 * W.a₆
            theorem WeierstrassCurve.b₈_of_isCharThreeJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] :
            W.b₈ = 4 * W.a₂ * W.a₆
            theorem WeierstrassCurve.c₄_of_isCharThreeJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] :
            W.c₄ = 16 * W.a₂ ^ 2
            theorem WeierstrassCurve.c₆_of_isCharThreeJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] :
            W.c₆ = -64 * W.a₂ ^ 3 - 864 * W.a₆
            theorem WeierstrassCurve.Δ_of_isCharThreeJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] :
            W = -64 * W.a₂ ^ 3 * W.a₆ - 432 * W.a₆ ^ 2
            theorem WeierstrassCurve.b₂_of_isCharThreeJNeZeroNF_of_char_three {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] [CharP R 3] :
            W.b₂ = W.a₂
            theorem WeierstrassCurve.b₆_of_isCharThreeJNeZeroNF_of_char_three {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] [CharP R 3] :
            W.b₆ = W.a₆
            theorem WeierstrassCurve.b₈_of_isCharThreeJNeZeroNF_of_char_three {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] [CharP R 3] :
            W.b₈ = W.a₂ * W.a₆
            theorem WeierstrassCurve.c₄_of_isCharThreeJNeZeroNF_of_char_three {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] [CharP R 3] :
            W.c₄ = W.a₂ ^ 2
            theorem WeierstrassCurve.c₆_of_isCharThreeJNeZeroNF_of_char_three {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] [CharP R 3] :
            W.c₆ = -W.a₂ ^ 3
            theorem WeierstrassCurve.Δ_of_isCharThreeJNeZeroNF_of_char_three {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] [CharP R 3] :
            W = -W.a₂ ^ 3 * W.a₆
            @[simp]
            theorem EllipticCurve.j_of_isCharThreeJNeZeroNF_of_char_three {F : Type u_2} [Field F] (E : EllipticCurve F) [E.IsCharThreeJNeZeroNF] [CharP F 3] :
            E.j = -E.a₂ ^ 3 / E.a₆
            theorem EllipticCurve.j_ne_zero_of_isCharThreeJNeZeroNF_of_char_three {F : Type u_2} [Field F] (E : EllipticCurve F) [E.IsCharThreeJNeZeroNF] [CharP F 3] :
            E.j 0

            Normal forms of characteristic = 3 #

            class inductive WeierstrassCurve.IsCharThreeNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) :

            A WeierstrassCurve is in normal form of characteristic = 3, if it is $Y^2 = X^3 + a_2X^2 + a_6$ (WeierstrassCurve.IsCharThreeJNeZeroNF) or $Y^2 = X^3 + a_4X + a_6$ (WeierstrassCurve.IsShortNF).

            Instances
              instance WeierstrassCurve.isCharThreeNF_of_isCharThreeJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeJNeZeroNF] :
              W.IsCharThreeNF
              Equations
              • =
              instance WeierstrassCurve.isCharThreeNF_of_isShortNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsShortNF] :
              W.IsCharThreeNF
              Equations
              • =
              instance WeierstrassCurve.isCharNeTwoNF_of_isCharThreeNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharThreeNF] :
              W.IsCharNeTwoNF
              Equations
              • =

              For a WeierstrassCurve defined over a ring of characteristic = 3, there is an explicit change of variables of it to $Y^2 = X^3 + a_4X + a_6$ (WeierstrassCurve.IsShortNF) if its j = 0. This is in fact given by WeierstrassCurve.toCharNeTwoNF.

              Equations
              • W.toShortNFOfCharThree = W.toCharNeTwoNF
              Instances For
                theorem WeierstrassCurve.toShortNFOfCharThree_a₂ {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [CharP R 3] :
                (W.variableChange W.toShortNFOfCharThree).a₂ = W.b₂
                theorem WeierstrassCurve.toShortNFOfCharThree_spec {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [CharP R 3] (hb₂ : W.b₂ = 0) :
                (W.variableChange W.toShortNFOfCharThree).IsShortNF
                theorem EllipticCurve.toShortNFOfCharThree_spec {R : Type u_1} [CommRing R] [CharP R 3] (E : EllipticCurve R) (hb₂ : E.b₂ = 0) :
                (E.variableChange E.toShortNFOfCharThree).IsShortNF

                For a WeierstrassCurve defined over a field of characteristic = 3, there is an explicit change of variables of it to WeierstrassCurve.IsCharThreeNF, that is, $Y^2 = X^3 + a_2X^2 + a_6$ (WeierstrassCurve.IsCharThreeJNeZeroNF) or $Y^2 = X^3 + a_4X + a_6$ (WeierstrassCurve.IsShortNF). It is the composition of an explicit change of variables with WeierstrassCurve.toShortNFOfCharThree.

                Equations
                • W.toCharThreeNF = { u := 1, r := (W.variableChange W.toShortNFOfCharThree).a₄ / (W.variableChange W.toShortNFOfCharThree).a₂, s := 0, t := 0 }.comp W.toShortNFOfCharThree
                Instances For
                  theorem WeierstrassCurve.toCharThreeNF_spec_of_b₂_ne_zero {F : Type u_2} [Field F] [CharP F 3] (W : WeierstrassCurve F) (hb₂ : W.b₂ 0) :
                  (W.variableChange W.toCharThreeNF).IsCharThreeJNeZeroNF
                  theorem WeierstrassCurve.toCharThreeNF_spec_of_b₂_eq_zero {F : Type u_2} [Field F] [CharP F 3] (W : WeierstrassCurve F) (hb₂ : W.b₂ = 0) :
                  (W.variableChange W.toCharThreeNF).IsShortNF
                  theorem EllipticCurve.toCharThreeNF_spec_of_b₂_ne_zero {F : Type u_2} [Field F] (E : EllipticCurve F) [CharP F 3] (hb₂ : E.b₂ 0) :
                  (E.variableChange E.toCharThreeNF).IsCharThreeJNeZeroNF
                  theorem EllipticCurve.toCharThreeNF_spec_of_b₂_eq_zero {F : Type u_2} [Field F] (E : EllipticCurve F) [CharP F 3] (hb₂ : E.b₂ = 0) :
                  (E.variableChange E.toCharThreeNF).IsShortNF
                  instance WeierstrassCurve.toCharThreeNF_spec {F : Type u_2} [Field F] [CharP F 3] (W : WeierstrassCurve F) :
                  (W.variableChange W.toCharThreeNF).IsCharThreeNF
                  Equations
                  • =
                  theorem WeierstrassCurve.exists_variableChange_isCharThreeNF {F : Type u_2} [Field F] [CharP F 3] (W : WeierstrassCurve F) :
                  ∃ (C : WeierstrassCurve.VariableChange F), (W.variableChange C).IsCharThreeNF
                  instance EllipticCurve.toCharThreeNF_spec {F : Type u_2} [Field F] (E : EllipticCurve F) [CharP F 3] :
                  (E.variableChange E.toCharThreeNF).IsCharThreeNF
                  Equations
                  • =
                  theorem EllipticCurve.exists_variableChange_isCharThreeNF {F : Type u_2} [Field F] (E : EllipticCurve F) [CharP F 3] :
                  ∃ (C : WeierstrassCurve.VariableChange F), (E.variableChange C).IsCharThreeNF

                  Normal forms of characteristic = 2 and j ≠ 0 #

                  A WeierstrassCurve is in normal form of characteristic = 2 and j ≠ 0, if its $a_1 = 1$ and $a_3, a_4 = 0$. In other words it is $Y^2 + XY = X^3 + a_2X^2 + a_6$.

                  • a₁ : W.a₁ = 1
                  • a₃ : W.a₃ = 0
                  • a₄ : W.a₄ = 0
                  Instances
                    theorem WeierstrassCurve.isCharTwoJNeZeroNF_iff {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) :
                    W.IsCharTwoJNeZeroNF W.a₁ = 1 W.a₃ = 0 W.a₄ = 0
                    @[simp]
                    theorem WeierstrassCurve.a₁_of_isCharTwoJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJNeZeroNF] :
                    W.a₁ = 1
                    @[simp]
                    theorem WeierstrassCurve.a₃_of_isCharTwoJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJNeZeroNF] :
                    W.a₃ = 0
                    @[simp]
                    theorem WeierstrassCurve.a₄_of_isCharTwoJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJNeZeroNF] :
                    W.a₄ = 0
                    @[simp]
                    theorem WeierstrassCurve.b₂_of_isCharTwoJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJNeZeroNF] :
                    W.b₂ = 1 + 4 * W.a₂
                    @[simp]
                    theorem WeierstrassCurve.b₄_of_isCharTwoJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJNeZeroNF] :
                    W.b₄ = 0
                    @[simp]
                    theorem WeierstrassCurve.b₆_of_isCharTwoJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJNeZeroNF] :
                    W.b₆ = 4 * W.a₆
                    @[simp]
                    theorem WeierstrassCurve.b₈_of_isCharTwoJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJNeZeroNF] :
                    W.b₈ = W.a₆ + 4 * W.a₂ * W.a₆
                    @[simp]
                    theorem WeierstrassCurve.c₄_of_isCharTwoJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJNeZeroNF] :
                    W.c₄ = W.b₂ ^ 2
                    @[simp]
                    theorem WeierstrassCurve.c₆_of_isCharTwoJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJNeZeroNF] :
                    W.c₆ = -W.b₂ ^ 3 - 864 * W.a₆
                    theorem WeierstrassCurve.b₂_of_isCharTwoJNeZeroNF_of_char_two {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJNeZeroNF] [CharP R 2] :
                    W.b₂ = 1
                    theorem WeierstrassCurve.b₆_of_isCharTwoJNeZeroNF_of_char_two {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJNeZeroNF] [CharP R 2] :
                    W.b₆ = 0
                    theorem WeierstrassCurve.b₈_of_isCharTwoJNeZeroNF_of_char_two {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJNeZeroNF] [CharP R 2] :
                    W.b₈ = W.a₆
                    theorem WeierstrassCurve.c₄_of_isCharTwoJNeZeroNF_of_char_two {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJNeZeroNF] [CharP R 2] :
                    W.c₄ = 1
                    theorem WeierstrassCurve.c₆_of_isCharTwoJNeZeroNF_of_char_two {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJNeZeroNF] [CharP R 2] :
                    W.c₆ = 1
                    @[simp]
                    theorem WeierstrassCurve.Δ_of_isCharTwoJNeZeroNF_of_char_two {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJNeZeroNF] [CharP R 2] :
                    W = W.a₆
                    @[simp]
                    theorem EllipticCurve.j_of_isCharTwoJNeZeroNF_of_char_two {F : Type u_2} [Field F] (E : EllipticCurve F) [E.IsCharTwoJNeZeroNF] [CharP F 2] :
                    E.j = 1 / E.a₆
                    theorem EllipticCurve.j_ne_zero_of_isCharTwoJNeZeroNF_of_char_two {F : Type u_2} [Field F] (E : EllipticCurve F) [E.IsCharTwoJNeZeroNF] [CharP F 2] :
                    E.j 0

                    Normal forms of characteristic = 2 and j = 0 #

                    A WeierstrassCurve is in normal form of characteristic = 2 and j = 0, if its $a_1, a_2 = 0$. In other words it is $Y^2 + a_3Y = X^3 + a_4X + a_6$.

                    • a₁ : W.a₁ = 0
                    • a₂ : W.a₂ = 0
                    Instances
                      theorem WeierstrassCurve.isCharTwoJEqZeroNF_iff {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) :
                      W.IsCharTwoJEqZeroNF W.a₁ = 0 W.a₂ = 0
                      @[simp]
                      theorem WeierstrassCurve.a₁_of_isCharTwoJEqZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJEqZeroNF] :
                      W.a₁ = 0
                      @[simp]
                      theorem WeierstrassCurve.a₂_of_isCharTwoJEqZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJEqZeroNF] :
                      W.a₂ = 0
                      @[simp]
                      theorem WeierstrassCurve.b₂_of_isCharTwoJEqZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJEqZeroNF] :
                      W.b₂ = 0
                      @[simp]
                      theorem WeierstrassCurve.b₄_of_isCharTwoJEqZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJEqZeroNF] :
                      W.b₄ = 2 * W.a₄
                      @[simp]
                      theorem WeierstrassCurve.b₈_of_isCharTwoJEqZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJEqZeroNF] :
                      W.b₈ = -W.a₄ ^ 2
                      @[simp]
                      theorem WeierstrassCurve.c₄_of_isCharTwoJEqZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJEqZeroNF] :
                      W.c₄ = -48 * W.a₄
                      @[simp]
                      theorem WeierstrassCurve.c₆_of_isCharTwoJEqZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJEqZeroNF] :
                      W.c₆ = -216 * W.b₆
                      @[simp]
                      theorem WeierstrassCurve.Δ_of_isCharTwoJEqZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJEqZeroNF] :
                      W = -(64 * W.a₄ ^ 3 + 27 * W.b₆ ^ 2)
                      theorem WeierstrassCurve.b₄_of_isCharTwoJEqZeroNF_of_char_two {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJEqZeroNF] [CharP R 2] :
                      W.b₄ = 0
                      theorem WeierstrassCurve.b₈_of_isCharTwoJEqZeroNF_of_char_two {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJEqZeroNF] [CharP R 2] :
                      W.b₈ = W.a₄ ^ 2
                      theorem WeierstrassCurve.c₄_of_isCharTwoJEqZeroNF_of_char_two {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJEqZeroNF] [CharP R 2] :
                      W.c₄ = 0
                      theorem WeierstrassCurve.c₆_of_isCharTwoJEqZeroNF_of_char_two {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJEqZeroNF] [CharP R 2] :
                      W.c₆ = 0
                      theorem WeierstrassCurve.Δ_of_isCharTwoJEqZeroNF_of_char_two {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJEqZeroNF] [CharP R 2] :
                      W = W.a₃ ^ 4
                      theorem EllipticCurve.j_of_isCharTwoJEqZeroNF {F : Type u_2} [Field F] (E : EllipticCurve F) [E.IsCharTwoJEqZeroNF] :
                      E.j = 110592 * E.a₄ ^ 3 / (64 * E.a₄ ^ 3 + 27 * E.b₆ ^ 2)
                      @[simp]
                      theorem EllipticCurve.j_of_isCharTwoJEqZeroNF_of_char_two {F : Type u_2} [Field F] (E : EllipticCurve F) [E.IsCharTwoJEqZeroNF] [CharP F 2] :
                      E.j = 0

                      Normal forms of characteristic = 2 #

                      class inductive WeierstrassCurve.IsCharTwoNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) :

                      A WeierstrassCurve is in normal form of characteristic = 2, if it is $Y^2 + XY = X^3 + a_2X^2 + a_6$ (WeierstrassCurve.IsCharTwoJNeZeroNF) or $Y^2 + a_3Y = X^3 + a_4X + a_6$ (WeierstrassCurve.IsCharTwoJEqZeroNF).

                      Instances
                        instance WeierstrassCurve.isCharTwoNF_of_isCharTwoJNeZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJNeZeroNF] :
                        W.IsCharTwoNF
                        Equations
                        • =
                        instance WeierstrassCurve.isCharTwoNF_of_isCharTwoJEqZeroNF {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [W.IsCharTwoJEqZeroNF] :
                        W.IsCharTwoNF
                        Equations
                        • =

                        For a WeierstrassCurve defined over a ring of characteristic = 2, there is an explicit change of variables of it to $Y^2 + a_3Y = X^3 + a_4X + a_6$ (WeierstrassCurve.IsCharTwoJEqZeroNF) if its j = 0.

                        Equations
                        • W.toCharTwoJEqZeroNF = { u := 1, r := W.a₂, s := 0, t := 0 }
                        Instances For
                          theorem WeierstrassCurve.toCharTwoJEqZeroNF_spec {R : Type u_1} [CommRing R] (W : WeierstrassCurve R) [CharP R 2] (ha₁ : W.a₁ = 0) :
                          (W.variableChange W.toCharTwoJEqZeroNF).IsCharTwoJEqZeroNF
                          theorem EllipticCurve.toCharTwoJEqZeroNF_spec {R : Type u_1} [CommRing R] [CharP R 2] (E : EllipticCurve R) (ha₁ : E.a₁ = 0) :
                          (E.variableChange E.toCharTwoJEqZeroNF).IsCharTwoJEqZeroNF

                          For a WeierstrassCurve defined over a field of characteristic = 2, there is an explicit change of variables of it to $Y^2 + XY = X^3 + a_2X^2 + a_6$ (WeierstrassCurve.IsCharTwoJNeZeroNF) if its j ≠ 0.

                          Equations
                          • W.toCharTwoJNeZeroNF ha₁ = { u := Units.mk0 W.a₁ ha₁, r := W.a₃ / W.a₁, s := 0, t := (W.a₁ ^ 2 * W.a₄ + W.a₃ ^ 2) / W.a₁ ^ 3 }
                          Instances For
                            theorem WeierstrassCurve.toCharTwoJNeZeroNF_spec {F : Type u_2} [Field F] [CharP F 2] (W : WeierstrassCurve F) (ha₁ : W.a₁ 0) :
                            (W.variableChange (W.toCharTwoJNeZeroNF ha₁)).IsCharTwoJNeZeroNF
                            theorem EllipticCurve.toCharTwoJNeZeroNF_spec {F : Type u_2} [Field F] (E : EllipticCurve F) [CharP F 2] (ha₁ : E.a₁ 0) :
                            (E.variableChange (E.toCharTwoJNeZeroNF ha₁)).IsCharTwoJNeZeroNF

                            For a WeierstrassCurve defined over a field of characteristic = 2, there is an explicit change of variables of it to WeierstrassCurve.IsCharTwoNF, that is, $Y^2 + XY = X^3 + a_2X^2 + a_6$ (WeierstrassCurve.IsCharTwoJNeZeroNF) or $Y^2 + a_3Y = X^3 + a_4X + a_6$ (WeierstrassCurve.IsCharTwoJEqZeroNF).

                            Equations
                            • W.toCharTwoNF = if ha₁ : W.a₁ = 0 then W.toCharTwoJEqZeroNF else W.toCharTwoJNeZeroNF ha₁
                            Instances For
                              instance WeierstrassCurve.toCharTwoNF_spec {F : Type u_2} [Field F] [CharP F 2] (W : WeierstrassCurve F) [DecidableEq F] :
                              (W.variableChange W.toCharTwoNF).IsCharTwoNF
                              Equations
                              • =
                              theorem WeierstrassCurve.exists_variableChange_isCharTwoNF {F : Type u_2} [Field F] [CharP F 2] (W : WeierstrassCurve F) :
                              ∃ (C : WeierstrassCurve.VariableChange F), (W.variableChange C).IsCharTwoNF
                              instance EllipticCurve.toCharTwoNF_spec {F : Type u_2} [Field F] (E : EllipticCurve F) [CharP F 2] [DecidableEq F] :
                              (E.variableChange E.toCharTwoNF).IsCharTwoNF
                              Equations
                              • =
                              theorem EllipticCurve.exists_variableChange_isCharTwoNF {F : Type u_2} [Field F] (E : EllipticCurve F) [CharP F 2] :
                              ∃ (C : WeierstrassCurve.VariableChange F), (E.variableChange C).IsCharTwoNF