Documentation

Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Basic

Basic properties of the scheme Proj A #

The scheme Proj 𝒜 for a graded algebra 𝒜 is constructed in AlgebraicGeometry/ProjectiveSpectrum/Scheme.lean. In this file we provide basic properties of the scheme.

Main results #

def AlgebraicGeometry.Proj.basicOpen {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) :

The basic open set D₊(f) associated to f : A.

Equations
Instances For
    @[simp]
    theorem AlgebraicGeometry.Proj.mem_basicOpen {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) (x : (AlgebraicGeometry.Proj 𝒜).toPresheafedSpace) :
    x AlgebraicGeometry.Proj.basicOpen 𝒜 f fx.asHomogeneousIdeal
    @[simp]
    @[simp]
    @[simp]
    theorem AlgebraicGeometry.Proj.basicOpen_pow {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) (n : ) (hn : 0 < n) :
    theorem AlgebraicGeometry.Proj.basicOpen_mono {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f g : A) (hfg : f g) :
    theorem AlgebraicGeometry.Proj.iSup_basicOpen_eq_top {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {ι : Type u_3} (f : ιA) (hf : (HomogeneousIdeal.irrelevant 𝒜).toIdeal Ideal.span (Set.range f)) :
    ⨆ (i : ι), AlgebraicGeometry.Proj.basicOpen 𝒜 (f i) =

    The canonical map (A_f)₀ ⟶ Γ(Proj A, D₊(f)). This is an isomorphism when f is homogeneous of positive degree. See basicOpenIsoAway below.

    Equations
    Instances For

      The canonical map Proj A |_ D₊(f) ⟶ Spec (A_f)₀. This is an isomorphism when f is homogeneous of positive degree. See basicOpenIsoSpec below.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        noncomputable def AlgebraicGeometry.Proj.toSpecZero {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] :

        The structure map Proj A ⟶ Spec A₀.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          noncomputable def AlgebraicGeometry.Proj.basicOpenIsoSpec {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :

          The canonical isomorphism Proj A |_ D₊(f) ≅ Spec (A_f)₀ when f is homogeneous of positive degree.

          Equations
          Instances For
            theorem AlgebraicGeometry.Proj.basicOpenIsoSpec_hom {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :
            noncomputable def AlgebraicGeometry.Proj.basicOpenIsoAway {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :

            The canonical isomorphism (A_f)₀ ≅ Γ(Proj A, D₊(f)) when f is homogeneous of positive degree.

            Equations
            Instances For
              theorem AlgebraicGeometry.Proj.basicOpenIsoAway_hom {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :
              noncomputable def AlgebraicGeometry.Proj.awayι {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :

              The open immersion Spec (A_f)₀ ⟶ Proj A.

              Equations
              Instances For
                instance AlgebraicGeometry.Proj.instIsOpenImmersionAwayι {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :
                Equations
                • =
                theorem AlgebraicGeometry.Proj.opensRange_awayι {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :
                theorem AlgebraicGeometry.Proj.isAffineOpen_basicOpen {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (f : A) {m : } (f_deg : f 𝒜 m) (hm : 0 < m) :
                noncomputable def AlgebraicGeometry.Proj.openCoverOfISupEqTop {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] {ι : Type u_3} (f : ιA) {m : ι} (f_deg : ∀ (i : ι), f i 𝒜 (m i)) (hm : ∀ (i : ι), 0 < m i) (hf : (HomogeneousIdeal.irrelevant 𝒜).toIdeal Ideal.span (Set.range f)) :
                (AlgebraicGeometry.Proj 𝒜).AffineOpenCover

                Given a family of homogeneous elements f of positive degree that spans the irrelavent ideal, Spec (A_f)₀ ⟶ Proj A forms an affine open cover of Proj A.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  noncomputable def AlgebraicGeometry.Proj.affineOpenCover {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] :
                  (AlgebraicGeometry.Proj 𝒜).AffineOpenCover

                  Proj A is covered by Spec (A_f)₀ for all homogeneous elements of positive degree.

                  Equations
                  Instances For
                    noncomputable def AlgebraicGeometry.Proj.stalkIso {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (𝒜 : Submodule R A) [GradedAlgebra 𝒜] (x : (AlgebraicGeometry.Proj 𝒜).toPresheafedSpace) :
                    (AlgebraicGeometry.Proj 𝒜).presheaf.stalk x CommRingCat.of (HomogeneousLocalization.AtPrime 𝒜 x.asHomogeneousIdeal.toIdeal)

                    The stalk of Proj A at x is the degree 0 part of the localization of A at x.

                    Equations
                    Instances For