Documentation

Mathlib.Analysis.Convex.Quasiconvex

Quasiconvex and quasiconcave functions #

This file defines quasiconvexity, quasiconcavity and quasilinearity of functions, which are generalizations of unimodality and monotonicity. Convexity implies quasiconvexity, concavity implies quasiconcavity, and monotonicity implies quasilinearity.

Main declarations #

References #

def QuasiconvexOn (𝕜 : Type u_1) {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [LE β] [SMul 𝕜 E] (s : Set E) (f : Eβ) :

A function is quasiconvex if all its sublevels are convex. This means that, for all r, {x ∈ s | f x ≤ r} is 𝕜-convex.

Equations
def QuasiconcaveOn (𝕜 : Type u_1) {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [LE β] [SMul 𝕜 E] (s : Set E) (f : Eβ) :

A function is quasiconcave if all its superlevels are convex. This means that, for all r, {x ∈ s | r ≤ f x} is 𝕜-convex.

Equations
def QuasilinearOn (𝕜 : Type u_1) {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [LE β] [SMul 𝕜 E] (s : Set E) (f : Eβ) :

A function is quasilinear if it is both quasiconvex and quasiconcave. This means that, for all r, the sets {x ∈ s | f x ≤ r} and {x ∈ s | r ≤ f x} are 𝕜-convex.

Equations
theorem QuasiconvexOn.dual {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [LE β] [SMul 𝕜 E] {s : Set E} {f : Eβ} :
QuasiconvexOn 𝕜 s fQuasiconcaveOn 𝕜 s (OrderDual.toDual f)
theorem QuasiconcaveOn.dual {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [LE β] [SMul 𝕜 E] {s : Set E} {f : Eβ} :
QuasiconcaveOn 𝕜 s fQuasiconvexOn 𝕜 s (OrderDual.toDual f)
theorem QuasilinearOn.dual {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [LE β] [SMul 𝕜 E] {s : Set E} {f : Eβ} :
QuasilinearOn 𝕜 s fQuasilinearOn 𝕜 s (OrderDual.toDual f)
theorem Convex.quasiconvexOn_of_convex_le {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [LE β] [SMul 𝕜 E] {s : Set E} {f : Eβ} (hs : Convex 𝕜 s) (h : ∀ (r : β), Convex 𝕜 {x : E | f x r}) :
QuasiconvexOn 𝕜 s f
theorem Convex.quasiconcaveOn_of_convex_ge {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [LE β] [SMul 𝕜 E] {s : Set E} {f : Eβ} (hs : Convex 𝕜 s) (h : ∀ (r : β), Convex 𝕜 {x : E | r f x}) :
theorem QuasiconvexOn.convex {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [LE β] [SMul 𝕜 E] {s : Set E} {f : Eβ} [IsDirected β fun (x1 x2 : β) => x1 x2] (hf : QuasiconvexOn 𝕜 s f) :
Convex 𝕜 s
theorem QuasiconcaveOn.convex {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [LE β] [SMul 𝕜 E] {s : Set E} {f : Eβ} [IsDirected β fun (x1 x2 : β) => x1 x2] (hf : QuasiconcaveOn 𝕜 s f) :
Convex 𝕜 s
theorem QuasiconvexOn.sup {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [SMul 𝕜 E] {s : Set E} {f g : Eβ} [SemilatticeSup β] (hf : QuasiconvexOn 𝕜 s f) (hg : QuasiconvexOn 𝕜 s g) :
QuasiconvexOn 𝕜 s (f g)
theorem QuasiconcaveOn.inf {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [SMul 𝕜 E] {s : Set E} {f g : Eβ} [SemilatticeInf β] (hf : QuasiconcaveOn 𝕜 s f) (hg : QuasiconcaveOn 𝕜 s g) :
QuasiconcaveOn 𝕜 s (f g)
theorem quasiconvexOn_iff_le_max {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrder β] [SMul 𝕜 E] {s : Set E} {f : Eβ} :
QuasiconvexOn 𝕜 s f Convex 𝕜 s ∀ ⦃x : E⦄, x s∀ ⦃y : E⦄, y s∀ ⦃a b : 𝕜⦄, 0 a0 ba + b = 1f (a x + b y) f x f y
theorem quasiconcaveOn_iff_min_le {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrder β] [SMul 𝕜 E] {s : Set E} {f : Eβ} :
QuasiconcaveOn 𝕜 s f Convex 𝕜 s ∀ ⦃x : E⦄, x s∀ ⦃y : E⦄, y s∀ ⦃a b : 𝕜⦄, 0 a0 ba + b = 1f x f y f (a x + b y)
theorem quasilinearOn_iff_mem_uIcc {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrder β] [SMul 𝕜 E] {s : Set E} {f : Eβ} :
QuasilinearOn 𝕜 s f Convex 𝕜 s ∀ ⦃x : E⦄, x s∀ ⦃y : E⦄, y s∀ ⦃a b : 𝕜⦄, 0 a0 ba + b = 1f (a x + b y) Set.uIcc (f x) (f y)
theorem QuasiconvexOn.convex_lt {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrder β] [SMul 𝕜 E] {s : Set E} {f : Eβ} (hf : QuasiconvexOn 𝕜 s f) (r : β) :
Convex 𝕜 {x : E | x s f x < r}
theorem QuasiconcaveOn.convex_gt {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [LinearOrder β] [SMul 𝕜 E] {s : Set E} {f : Eβ} (hf : QuasiconcaveOn 𝕜 s f) (r : β) :
Convex 𝕜 {x : E | x s r < f x}
theorem ConvexOn.quasiconvexOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConvexOn 𝕜 s f) :
QuasiconvexOn 𝕜 s f
theorem ConcaveOn.quasiconcaveOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [AddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [Module 𝕜 β] [OrderedSMul 𝕜 β] {s : Set E} {f : Eβ} (hf : ConcaveOn 𝕜 s f) :
theorem MonotoneOn.quasiconvexOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [LinearOrderedAddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [OrderedSMul 𝕜 E] {s : Set E} {f : Eβ} (hf : MonotoneOn f s) (hs : Convex 𝕜 s) :
QuasiconvexOn 𝕜 s f
theorem MonotoneOn.quasiconcaveOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [LinearOrderedAddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [OrderedSMul 𝕜 E] {s : Set E} {f : Eβ} (hf : MonotoneOn f s) (hs : Convex 𝕜 s) :
theorem MonotoneOn.quasilinearOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [LinearOrderedAddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [OrderedSMul 𝕜 E] {s : Set E} {f : Eβ} (hf : MonotoneOn f s) (hs : Convex 𝕜 s) :
QuasilinearOn 𝕜 s f
theorem AntitoneOn.quasiconvexOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [LinearOrderedAddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [OrderedSMul 𝕜 E] {s : Set E} {f : Eβ} (hf : AntitoneOn f s) (hs : Convex 𝕜 s) :
QuasiconvexOn 𝕜 s f
theorem AntitoneOn.quasiconcaveOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [LinearOrderedAddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [OrderedSMul 𝕜 E] {s : Set E} {f : Eβ} (hf : AntitoneOn f s) (hs : Convex 𝕜 s) :
theorem AntitoneOn.quasilinearOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [LinearOrderedAddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [OrderedSMul 𝕜 E] {s : Set E} {f : Eβ} (hf : AntitoneOn f s) (hs : Convex 𝕜 s) :
QuasilinearOn 𝕜 s f
theorem Monotone.quasiconvexOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [LinearOrderedAddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [OrderedSMul 𝕜 E] {f : Eβ} (hf : Monotone f) :
QuasiconvexOn 𝕜 Set.univ f
theorem Monotone.quasiconcaveOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [LinearOrderedAddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [OrderedSMul 𝕜 E] {f : Eβ} (hf : Monotone f) :
QuasiconcaveOn 𝕜 Set.univ f
theorem Monotone.quasilinearOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [LinearOrderedAddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [OrderedSMul 𝕜 E] {f : Eβ} (hf : Monotone f) :
QuasilinearOn 𝕜 Set.univ f
theorem Antitone.quasiconvexOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [LinearOrderedAddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [OrderedSMul 𝕜 E] {f : Eβ} (hf : Antitone f) :
QuasiconvexOn 𝕜 Set.univ f
theorem Antitone.quasiconcaveOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [LinearOrderedAddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [OrderedSMul 𝕜 E] {f : Eβ} (hf : Antitone f) :
QuasiconcaveOn 𝕜 Set.univ f
theorem Antitone.quasilinearOn {𝕜 : Type u_1} {E : Type u_2} {β : Type u_3} [OrderedSemiring 𝕜] [LinearOrderedAddCommMonoid E] [OrderedAddCommMonoid β] [Module 𝕜 E] [OrderedSMul 𝕜 E] {f : Eβ} (hf : Antitone f) :
QuasilinearOn 𝕜 Set.univ f
theorem QuasilinearOn.monotoneOn_or_antitoneOn {𝕜 : Type u_1} {β : Type u_3} [LinearOrderedField 𝕜] {s : Set 𝕜} {f : 𝕜β} [LinearOrder β] (hf : QuasilinearOn 𝕜 s f) :
theorem quasilinearOn_iff_monotoneOn_or_antitoneOn {𝕜 : Type u_1} {β : Type u_3} [LinearOrderedField 𝕜] {s : Set 𝕜} {f : 𝕜β} [LinearOrderedAddCommMonoid β] (hs : Convex 𝕜 s) :