Documentation

Mathlib.Analysis.LocallyConvex.BalancedCoreHull

Balanced Core and Balanced Hull #

Main definitions #

Main statements #

Implementation details #

The balanced core and hull are implemented differently: for the core we take the obvious definition of the union over all balanced sets that are contained in s, whereas for the hull, we take the union over r โ€ข s, for r the scalars with โ€–rโ€– โ‰ค 1. We show that balancedHull has the defining properties of a hull in Balanced.balancedHull_subset_of_subset and subset_balancedHull. For the core we need slightly stronger assumptions to obtain a characterization as an intersection, this is balancedCore_eq_iInter.

References #

Tags #

balanced

def balancedCore (๐•œ : Type u_1) {E : Type u_2} [SeminormedRing ๐•œ] [SMul ๐•œ E] (s : Set E) :
Set E

The largest balanced subset of s.

Equations
Instances For
    def balancedCoreAux (๐•œ : Type u_1) {E : Type u_2} [SeminormedRing ๐•œ] [SMul ๐•œ E] (s : Set E) :
    Set E

    Helper definition to prove balanced_core_eq_iInter

    Equations
    Instances For
      def balancedHull (๐•œ : Type u_1) {E : Type u_2} [SeminormedRing ๐•œ] [SMul ๐•œ E] (s : Set E) :
      Set E

      The smallest balanced superset of s.

      Equations
      Instances For
        theorem balancedCore_subset {๐•œ : Type u_1} {E : Type u_2} [SeminormedRing ๐•œ] [SMul ๐•œ E] (s : Set E) :
        balancedCore ๐•œ s โŠ† s
        theorem balancedCore_empty {๐•œ : Type u_1} {E : Type u_2} [SeminormedRing ๐•œ] [SMul ๐•œ E] :
        theorem mem_balancedCore_iff {๐•œ : Type u_1} {E : Type u_2} [SeminormedRing ๐•œ] [SMul ๐•œ E] {s : Set E} {x : E} :
        x โˆˆ balancedCore ๐•œ s โ†” โˆƒ (t : Set E), Balanced ๐•œ t โˆง t โŠ† s โˆง x โˆˆ t
        theorem smul_balancedCore_subset {๐•œ : Type u_1} {E : Type u_2} [SeminormedRing ๐•œ] [SMul ๐•œ E] (s : Set E) {a : ๐•œ} (ha : โ€–aโ€– โ‰ค 1) :
        a โ€ข balancedCore ๐•œ s โŠ† balancedCore ๐•œ s
        theorem balancedCore_balanced {๐•œ : Type u_1} {E : Type u_2} [SeminormedRing ๐•œ] [SMul ๐•œ E] (s : Set E) :
        Balanced ๐•œ (balancedCore ๐•œ s)
        theorem Balanced.subset_balancedCore_of_subset {๐•œ : Type u_1} {E : Type u_2} [SeminormedRing ๐•œ] [SMul ๐•œ E] {s t : Set E} (hs : Balanced ๐•œ s) (h : s โŠ† t) :
        s โŠ† balancedCore ๐•œ t

        The balanced core of t is maximal in the sense that it contains any balanced subset s of t.

        theorem mem_balancedCoreAux_iff {๐•œ : Type u_1} {E : Type u_2} [SeminormedRing ๐•œ] [SMul ๐•œ E] {s : Set E} {x : E} :
        x โˆˆ balancedCoreAux ๐•œ s โ†” โˆ€ (r : ๐•œ), 1 โ‰ค โ€–rโ€– โ†’ x โˆˆ r โ€ข s
        theorem mem_balancedHull_iff {๐•œ : Type u_1} {E : Type u_2} [SeminormedRing ๐•œ] [SMul ๐•œ E] {s : Set E} {x : E} :
        x โˆˆ balancedHull ๐•œ s โ†” โˆƒ (r : ๐•œ), โ€–rโ€– โ‰ค 1 โˆง x โˆˆ r โ€ข s
        theorem Balanced.balancedHull_subset_of_subset {๐•œ : Type u_1} {E : Type u_2} [SeminormedRing ๐•œ] [SMul ๐•œ E] {s t : Set E} (ht : Balanced ๐•œ t) (h : s โŠ† t) :
        balancedHull ๐•œ s โŠ† t

        The balanced hull of s is minimal in the sense that it is contained in any balanced superset t of s.

        theorem balancedHull_mono {๐•œ : Type u_1} {E : Type u_2} [SeminormedRing ๐•œ] [SMul ๐•œ E] {s t : Set E} (hst : s โŠ† t) :
        balancedHull ๐•œ s โŠ† balancedHull ๐•œ t
        theorem balancedCore_zero_mem {๐•œ : Type u_1} {E : Type u_2} [SeminormedRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] {s : Set E} (hs : 0 โˆˆ s) :
        0 โˆˆ balancedCore ๐•œ s
        theorem balancedCore_nonempty_iff {๐•œ : Type u_1} {E : Type u_2} [SeminormedRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] {s : Set E} :
        (balancedCore ๐•œ s).Nonempty โ†” 0 โˆˆ s
        theorem subset_balancedHull (๐•œ : Type u_1) {E : Type u_2} [SeminormedRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] [NormOneClass ๐•œ] {s : Set E} :
        s โŠ† balancedHull ๐•œ s
        theorem balancedHull.balanced {๐•œ : Type u_1} {E : Type u_2} [SeminormedRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] (s : Set E) :
        Balanced ๐•œ (balancedHull ๐•œ s)
        theorem balancedHull_add_subset {๐•œ : Type u_1} {E : Type u_2} [SeminormedRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] {s : Set E} [NormOneClass ๐•œ] {t : Set E} :
        balancedHull ๐•œ (s + t) โŠ† balancedHull ๐•œ s + balancedHull ๐•œ t
        @[simp]
        theorem balancedCoreAux_empty {๐•œ : Type u_1} {E : Type u_2} [NormedDivisionRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] :
        theorem balancedCoreAux_subset {๐•œ : Type u_1} {E : Type u_2} [NormedDivisionRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] (s : Set E) :
        balancedCoreAux ๐•œ s โŠ† s
        theorem balancedCoreAux_balanced {๐•œ : Type u_1} {E : Type u_2} [NormedDivisionRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] {s : Set E} (h0 : 0 โˆˆ balancedCoreAux ๐•œ s) :
        Balanced ๐•œ (balancedCoreAux ๐•œ s)
        theorem balancedCoreAux_maximal {๐•œ : Type u_1} {E : Type u_2} [NormedDivisionRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] {s t : Set E} (h : t โŠ† s) (ht : Balanced ๐•œ t) :
        t โŠ† balancedCoreAux ๐•œ s
        theorem balancedCore_subset_balancedCoreAux {๐•œ : Type u_1} {E : Type u_2} [NormedDivisionRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] {s : Set E} :
        balancedCore ๐•œ s โŠ† balancedCoreAux ๐•œ s
        theorem balancedCore_eq_iInter {๐•œ : Type u_1} {E : Type u_2} [NormedDivisionRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] {s : Set E} (hs : 0 โˆˆ s) :
        balancedCore ๐•œ s = โ‹‚ (r : ๐•œ), โ‹‚ (_ : 1 โ‰ค โ€–rโ€–), r โ€ข s
        theorem subset_balancedCore {๐•œ : Type u_1} {E : Type u_2} [NormedDivisionRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] {s t : Set E} (ht : 0 โˆˆ t) (hst : โˆ€ (a : ๐•œ), โ€–aโ€– โ‰ค 1 โ†’ a โ€ข s โŠ† t) :
        s โŠ† balancedCore ๐•œ t

        Topological properties #

        theorem IsClosed.balancedCore {๐•œ : Type u_1} {E : Type u_2} [NormedDivisionRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] [ContinuousSMul ๐•œ E] {U : Set E} (hU : IsClosed U) :
        IsClosed (balancedCore ๐•œ U)
        theorem balancedCore_mem_nhds_zero {๐•œ : Type u_1} {E : Type u_2} [NormedDivisionRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] [ContinuousSMul ๐•œ E] {U : Set E} [(nhdsWithin 0 {0}แถœ).NeBot] (hU : U โˆˆ nhds 0) :
        balancedCore ๐•œ U โˆˆ nhds 0
        theorem nhds_basis_balanced (๐•œ : Type u_1) (E : Type u_2) [NormedDivisionRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] [ContinuousSMul ๐•œ E] [(nhdsWithin 0 {0}แถœ).NeBot] :
        (nhds 0).HasBasis (fun (s : Set E) => s โˆˆ nhds 0 โˆง Balanced ๐•œ s) id
        theorem nhds_basis_closed_balanced (๐•œ : Type u_1) (E : Type u_2) [NormedDivisionRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] [ContinuousSMul ๐•œ E] [(nhdsWithin 0 {0}แถœ).NeBot] [RegularSpace E] :
        (nhds 0).HasBasis (fun (s : Set E) => s โˆˆ nhds 0 โˆง IsClosed s โˆง Balanced ๐•œ s) id