Documentation

Mathlib.CategoryTheory.Limits.Shapes.Pullback.Square

Commutative squares that are pushout or pullback squares #

In this file, we translate the IsPushout and IsPullback API for the objects of the category Square C of commutative squares in a category C. We also obtain lemmas which states in this language that a pullback of a monomorphism is a monomorphism (and similarly for pushouts of epimorphisms).

@[reducible, inline]

The pullback cone attached to a commutative square.

Equations
@[reducible, inline]

The pushout cocone attached to a commutative square.

Equations

The condition that a commutative square is a pullback square.

Equations

The condition that a commutative square is a pushout square.

Equations

If a commutative square sq is a pullback square, then sq.pullbackCone is limit.

Equations

If a commutative square sq is a pushout square, then sq.pushoutCocone is colimit.

Equations
theorem CategoryTheory.Square.IsPullback.of_iso {C : Type u} [CategoryTheory.Category.{v, u} C] {sq₁ sq₂ : CategoryTheory.Square C} (h : sq₁.IsPullback) (e : sq₁ sq₂) :
sq₂.IsPullback
theorem CategoryTheory.Square.IsPullback.iff_of_iso {C : Type u} [CategoryTheory.Category.{v, u} C] {sq₁ sq₂ : CategoryTheory.Square C} (e : sq₁ sq₂) :
sq₁.IsPullback sq₂.IsPullback
theorem CategoryTheory.Square.IsPushout.of_iso {C : Type u} [CategoryTheory.Category.{v, u} C] {sq₁ sq₂ : CategoryTheory.Square C} (h : sq₁.IsPushout) (e : sq₁ sq₂) :
sq₂.IsPushout
theorem CategoryTheory.Square.IsPushout.iff_of_iso {C : Type u} [CategoryTheory.Category.{v, u} C] {sq₁ sq₂ : CategoryTheory.Square C} (e : sq₁ sq₂) :
sq₁.IsPushout sq₂.IsPushout
theorem CategoryTheory.Square.IsPushout.op {C : Type u} [CategoryTheory.Category.{v, u} C] {sq : CategoryTheory.Square C} (h : sq.IsPushout) :
sq.op.IsPullback
theorem CategoryTheory.Square.IsPushout.unop {C : Type u} [CategoryTheory.Category.{v, u} C] {sq : CategoryTheory.Square Cᵒᵖ} (h : sq.IsPushout) :
sq.unop.IsPullback
theorem CategoryTheory.Square.IsPullback.op {C : Type u} [CategoryTheory.Category.{v, u} C] {sq : CategoryTheory.Square C} (h : sq.IsPullback) :
sq.op.IsPushout
theorem CategoryTheory.Square.IsPullback.unop {C : Type u} [CategoryTheory.Category.{v, u} C] {sq : CategoryTheory.Square Cᵒᵖ} (h : sq.IsPullback) :
sq.unop.IsPushout
theorem CategoryTheory.Square.IsPullback.flip {C : Type u} [CategoryTheory.Category.{v, u} C] {sq : CategoryTheory.Square C} (h : sq.IsPullback) :
sq.flip.IsPullback
theorem CategoryTheory.Square.IsPushout.flip {C : Type u} [CategoryTheory.Category.{v, u} C] {sq : CategoryTheory.Square C} (h : sq.IsPushout) :
sq.flip.IsPushout