Documentation

Mathlib.Data.Finset.Defs

Finite sets #

Terms of type Finset α are one way of talking about finite subsets of α in Mathlib. Below, Finset α is defined as a structure with 2 fields:

  1. val is a Multiset α of elements;
  2. nodup is a proof that val has no duplicates.

Finsets in Lean are constructive in that they have an underlying List that enumerates their elements. In particular, any function that uses the data of the underlying list cannot depend on its ordering. This is handled on the Multiset level by multiset API, so in most cases one needn't worry about it explicitly.

Finsets give a basic foundation for defining finite sums and products over types:

  1. ∑ i ∈ (s : Finset α), f i;
  2. ∏ i ∈ (s : Finset α), f i.

Lean refers to these operations as big operators. More information can be found in Mathlib/Algebra/BigOperators/Group/Finset.lean.

Finsets are directly used to define fintypes in Lean. A Fintype α instance for a type α consists of a universal Finset α containing every term of α, called univ. See Mathlib/Data/Fintype/Basic.lean. There is also univ', the noncomputable partner to univ, which is defined to be α as a finset if α is finite, and the empty finset otherwise. See Mathlib/Data/Fintype/Basic.lean.

Finset.card, the size of a finset is defined in Mathlib/Data/Finset/Card.lean. This is then used to define Fintype.card, the size of a type.

File structure #

This file defines the Finset type and the membership and subset relations between finsets. Most constructions involving Finsets have been split off to their own files.

Main definitions #

Tags #

finite sets, finset

structure Finset (α : Type u_4) :
Type u_4

Finset α is the type of finite sets of elements of α. It is implemented as a multiset (a list up to permutation) which has no duplicate elements.

  • val : Multiset α

    The underlying multiset

  • nodup : self.val.Nodup

    val contains no duplicates

Instances For
    instance Multiset.canLiftFinset {α : Type u_4} :
    CanLift (Multiset α) (Finset α) Finset.val Multiset.Nodup
    Equations
    • =
    theorem Finset.eq_of_veq {α : Type u_1} {s t : Finset α} :
    s.val = t.vals = t
    theorem Finset.val_injective {α : Type u_1} :
    @[simp]
    theorem Finset.val_inj {α : Type u_1} {s t : Finset α} :
    s.val = t.val s = t
    instance Finset.decidableEq {α : Type u_1} [DecidableEq α] :
    Equations

    membership #

    instance Finset.instMembership {α : Type u_1} :
    Equations
    • Finset.instMembership = { mem := fun (s : Finset α) (a : α) => a s.val }
    theorem Finset.mem_def {α : Type u_1} {a : α} {s : Finset α} :
    a s a s.val
    @[simp]
    theorem Finset.mem_val {α : Type u_1} {a : α} {s : Finset α} :
    a s.val a s
    @[simp]
    theorem Finset.mem_mk {α : Type u_1} {a : α} {s : Multiset α} {nd : s.Nodup} :
    a { val := s, nodup := nd } a s
    instance Finset.decidableMem {α : Type u_1} [_h : DecidableEq α] (a : α) (s : Finset α) :
    Equations
    @[simp]
    theorem Finset.forall_mem_not_eq {α : Type u_1} {s : Finset α} {a : α} :
    (∀ bs, ¬a = b) as
    @[simp]
    theorem Finset.forall_mem_not_eq' {α : Type u_1} {s : Finset α} {a : α} :
    (∀ bs, ¬b = a) as

    set coercion #

    def Finset.toSet {α : Type u_1} (s : Finset α) :
    Set α

    Convert a finset to a set in the natural way.

    Equations
    • s = {a : α | a s}
    Instances For
      instance Finset.instCoeTCSet {α : Type u_1} :
      CoeTC (Finset α) (Set α)

      Convert a finset to a set in the natural way.

      Equations
      • Finset.instCoeTCSet = { coe := Finset.toSet }
      @[simp]
      theorem Finset.mem_coe {α : Type u_1} {a : α} {s : Finset α} :
      a s a s
      @[simp]
      theorem Finset.setOf_mem {α : Type u_4} {s : Finset α} :
      {a : α | a s} = s
      @[simp]
      theorem Finset.coe_mem {α : Type u_1} {s : Finset α} (x : s) :
      x s
      theorem Finset.mk_coe {α : Type u_1} {s : Finset α} (x : s) {h : x s} :
      x, h = x
      instance Finset.decidableMem' {α : Type u_1} [DecidableEq α] (a : α) (s : Finset α) :
      Decidable (a s)
      Equations

      extensionality #

      theorem Finset.ext {α : Type u_1} {s₁ s₂ : Finset α} (h : ∀ (a : α), a s₁ a s₂) :
      s₁ = s₂
      @[simp]
      theorem Finset.coe_inj {α : Type u_1} {s₁ s₂ : Finset α} :
      s₁ = s₂ s₁ = s₂
      theorem Finset.coe_injective {α : Type u_4} :
      Function.Injective Finset.toSet

      type coercion #

      instance Finset.instCoeSortType {α : Type u} :

      Coercion from a finset to the corresponding subtype.

      Equations
      • Finset.instCoeSortType = { coe := fun (s : Finset α) => { x : α // x s } }
      theorem Finset.forall_coe {α : Type u_4} (s : Finset α) (p : { x : α // x s }Prop) :
      (∀ (x : { x : α // x s }), p x) ∀ (x : α) (h : x s), p x, h
      theorem Finset.exists_coe {α : Type u_4} (s : Finset α) (p : { x : α // x s }Prop) :
      (∃ (x : { x : α // x s }), p x) ∃ (x : α) (h : x s), p x, h
      instance Finset.PiFinsetCoe.canLift (ι : Type u_4) (α : ιType u_5) [_ne : ∀ (i : ι), Nonempty (α i)] (s : Finset ι) :
      CanLift ((i : { x : ι // x s }) → α i) ((i : ι) → α i) (fun (f : (i : ι) → α i) (i : { x : ι // x s }) => f i) fun (x : (i : { x : ι // x s }) → α i) => True
      Equations
      • =
      instance Finset.PiFinsetCoe.canLift' (ι : Type u_4) (α : Type u_5) [_ne : Nonempty α] (s : Finset ι) :
      CanLift ({ x : ι // x s }α) (ια) (fun (f : ια) (i : { x : ι // x s }) => f i) fun (x : { x : ι // x s }α) => True
      Equations
      • =
      instance Finset.FinsetCoe.canLift {α : Type u_1} (s : Finset α) :
      CanLift α { x : α // x s } Subtype.val fun (a : α) => a s
      Equations
      • =
      @[simp]
      theorem Finset.coe_sort_coe {α : Type u_1} (s : Finset α) :
      s = { x : α // x s }

      Subset and strict subset relations #

      instance Finset.instHasSubset {α : Type u_1} :
      Equations
      • Finset.instHasSubset = { Subset := fun (s t : Finset α) => ∀ ⦃a : α⦄, a sa t }
      instance Finset.instHasSSubset {α : Type u_1} :
      Equations
      instance Finset.partialOrder {α : Type u_1} :
      Equations
      instance Finset.instIsReflSubset {α : Type u_1} :
      IsRefl (Finset α) fun (x1 x2 : Finset α) => x1 x2
      Equations
      • =
      instance Finset.instIsTransSubset {α : Type u_1} :
      IsTrans (Finset α) fun (x1 x2 : Finset α) => x1 x2
      Equations
      • =
      instance Finset.instIsAntisymmSubset {α : Type u_1} :
      IsAntisymm (Finset α) fun (x1 x2 : Finset α) => x1 x2
      Equations
      • =
      instance Finset.instIsIrreflSSubset {α : Type u_1} :
      IsIrrefl (Finset α) fun (x1 x2 : Finset α) => x1 x2
      Equations
      • =
      instance Finset.instIsTransSSubset {α : Type u_1} :
      IsTrans (Finset α) fun (x1 x2 : Finset α) => x1 x2
      Equations
      • =
      instance Finset.instIsAsymmSSubset {α : Type u_1} :
      IsAsymm (Finset α) fun (x1 x2 : Finset α) => x1 x2
      Equations
      • =
      instance Finset.instIsNonstrictStrictOrderSubsetSSubset {α : Type u_1} :
      IsNonstrictStrictOrder (Finset α) (fun (x1 x2 : Finset α) => x1 x2) fun (x1 x2 : Finset α) => x1 x2
      Equations
      • =
      theorem Finset.subset_def {α : Type u_1} {s t : Finset α} :
      s t s.val t.val
      theorem Finset.ssubset_def {α : Type u_1} {s t : Finset α} :
      s t s t ¬t s
      theorem Finset.Subset.refl {α : Type u_1} (s : Finset α) :
      s s
      theorem Finset.Subset.rfl {α : Type u_1} {s : Finset α} :
      s s
      theorem Finset.subset_of_eq {α : Type u_1} {s t : Finset α} (h : s = t) :
      s t
      theorem Finset.Subset.trans {α : Type u_1} {s₁ s₂ s₃ : Finset α} :
      s₁ s₂s₂ s₃s₁ s₃
      theorem Finset.Superset.trans {α : Type u_1} {s₁ s₂ s₃ : Finset α} :
      s₁ s₂s₂ s₃s₁ s₃
      theorem Finset.mem_of_subset {α : Type u_1} {s₁ s₂ : Finset α} {a : α} :
      s₁ s₂a s₁a s₂
      theorem Finset.not_mem_mono {α : Type u_1} {s t : Finset α} (h : s t) {a : α} :
      atas
      theorem Finset.Subset.antisymm {α : Type u_1} {s₁ s₂ : Finset α} (H₁ : s₁ s₂) (H₂ : s₂ s₁) :
      s₁ = s₂
      theorem Finset.subset_iff {α : Type u_1} {s₁ s₂ : Finset α} :
      s₁ s₂ ∀ ⦃x : α⦄, x s₁x s₂
      @[simp]
      theorem Finset.coe_subset {α : Type u_1} {s₁ s₂ : Finset α} :
      s₁ s₂ s₁ s₂
      theorem Finset.GCongr.coe_subset_coe {α : Type u_1} {s₁ s₂ : Finset α} :
      s₁ s₂s₁ s₂

      Alias of the reverse direction of Finset.coe_subset.

      @[simp]
      theorem Finset.val_le_iff {α : Type u_1} {s₁ s₂ : Finset α} :
      s₁.val s₂.val s₁ s₂
      theorem Finset.Subset.antisymm_iff {α : Type u_1} {s₁ s₂ : Finset α} :
      s₁ = s₂ s₁ s₂ s₂ s₁
      theorem Finset.not_subset {α : Type u_1} {s t : Finset α} :
      ¬s t xs, xt
      @[simp]
      theorem Finset.le_eq_subset {α : Type u_1} :
      (fun (x1 x2 : Finset α) => x1 x2) = fun (x1 x2 : Finset α) => x1 x2
      @[simp]
      theorem Finset.lt_eq_subset {α : Type u_1} :
      (fun (x1 x2 : Finset α) => x1 < x2) = fun (x1 x2 : Finset α) => x1 x2
      theorem Finset.le_iff_subset {α : Type u_1} {s₁ s₂ : Finset α} :
      s₁ s₂ s₁ s₂
      theorem Finset.lt_iff_ssubset {α : Type u_1} {s₁ s₂ : Finset α} :
      s₁ < s₂ s₁ s₂
      @[simp]
      theorem Finset.coe_ssubset {α : Type u_1} {s₁ s₂ : Finset α} :
      s₁ s₂ s₁ s₂
      @[simp]
      theorem Finset.val_lt_iff {α : Type u_1} {s₁ s₂ : Finset α} :
      s₁.val < s₂.val s₁ s₂
      theorem Finset.val_strictMono {α : Type u_1} :
      StrictMono Finset.val
      theorem Finset.ssubset_iff_subset_ne {α : Type u_1} {s t : Finset α} :
      s t s t s t
      theorem Finset.ssubset_iff_of_subset {α : Type u_1} {s₁ s₂ : Finset α} (h : s₁ s₂) :
      s₁ s₂ xs₂, xs₁
      theorem Finset.ssubset_of_ssubset_of_subset {α : Type u_1} {s₁ s₂ s₃ : Finset α} (hs₁s₂ : s₁ s₂) (hs₂s₃ : s₂ s₃) :
      s₁ s₃
      theorem Finset.ssubset_of_subset_of_ssubset {α : Type u_1} {s₁ s₂ s₃ : Finset α} (hs₁s₂ : s₁ s₂) (hs₂s₃ : s₂ s₃) :
      s₁ s₃
      theorem Finset.exists_of_ssubset {α : Type u_1} {s₁ s₂ : Finset α} (h : s₁ s₂) :
      xs₂, xs₁
      instance Finset.isWellFounded_ssubset {α : Type u_1} :
      IsWellFounded (Finset α) fun (x1 x2 : Finset α) => x1 x2
      Equations
      • =
      instance Finset.wellFoundedLT {α : Type u_1} :
      Equations
      • =

      Order embedding from Finset α to Set α #

      def Finset.coeEmb {α : Type u_1} :

      Coercion to Set α as an OrderEmbedding.

      Equations
      • Finset.coeEmb = { toFun := Finset.toSet, inj' := , map_rel_iff' := }
      Instances For
        @[simp]
        theorem Finset.coe_coeEmb {α : Type u_1} :
        Finset.coeEmb = Finset.toSet

        Assorted results #

        These results can be defined using the current imports, but deserve to be given a nicer home.

        theorem Finset.sizeOf_lt_sizeOf_of_mem {α : Type u_1} [SizeOf α] {x : α} {s : Finset α} (hx : x s) :
        instance Finset.decidableDforallFinset {α : Type u_1} {s : Finset α} {p : (a : α) → a sProp} [_hp : (a : α) → (h : a s) → Decidable (p a h)] :
        Decidable (∀ (a : α) (h : a s), p a h)
        Equations
        • Finset.decidableDforallFinset = Multiset.decidableDforallMultiset
        instance Finset.instDecidableRelSubset {α : Type u_1} [DecidableEq α] :
        DecidableRel fun (x1 x2 : Finset α) => x1 x2
        Equations
        • x✝.instDecidableRelSubset x = Finset.decidableDforallFinset
        instance Finset.instDecidableRelSSubset {α : Type u_1} [DecidableEq α] :
        DecidableRel fun (x1 x2 : Finset α) => x1 x2
        Equations
        • x✝.instDecidableRelSSubset x = instDecidableAnd
        instance Finset.instDecidableLE {α : Type u_1} [DecidableEq α] :
        DecidableRel fun (x1 x2 : Finset α) => x1 x2
        Equations
        • Finset.instDecidableLE = Finset.instDecidableRelSubset
        instance Finset.instDecidableLT {α : Type u_1} [DecidableEq α] :
        DecidableRel fun (x1 x2 : Finset α) => x1 < x2
        Equations
        • Finset.instDecidableLT = Finset.instDecidableRelSSubset
        instance Finset.decidableDExistsFinset {α : Type u_1} {s : Finset α} {p : (a : α) → a sProp} [_hp : (a : α) → (h : a s) → Decidable (p a h)] :
        Decidable (∃ (a : α) (h : a s), p a h)
        Equations
        • Finset.decidableDExistsFinset = Multiset.decidableDexistsMultiset
        instance Finset.decidableExistsAndFinset {α : Type u_1} {s : Finset α} {p : αProp} [_hp : (a : α) → Decidable (p a)] :
        Decidable (∃ as, p a)
        Equations
        instance Finset.decidableExistsAndFinsetCoe {α : Type u_1} {s : Finset α} {p : αProp} [DecidablePred p] :
        Decidable (∃ as, p a)
        Equations
        • Finset.decidableExistsAndFinsetCoe = Finset.decidableExistsAndFinset
        instance Finset.decidableEqPiFinset {α : Type u_1} {s : Finset α} {β : αType u_4} [_h : (a : α) → DecidableEq (β a)] :
        DecidableEq ((a : α) → a sβ a)

        decidable equality for functions whose domain is bounded by finsets

        Equations
        • Finset.decidableEqPiFinset = Multiset.decidableEqPiMultiset
        instance List.instDecidableInjOnToSetOfDecidableEq {α : Type u_1} {β : Type u_2} [DecidableEq α] {f : αβ} {s : Finset α} [DecidableEq β] :
        Equations
        instance List.instDecidableMapsToToSetOfDecidablePredMemSet {α : Type u_1} {β : Type u_2} {f : αβ} {s : Finset α} {t : Set β} [DecidablePred fun (x : β) => x t] :
        Decidable (Set.MapsTo f (↑s) t)
        Equations
        instance List.instDecidableSurjOnToSetOfDecidableEq {α : Type u_1} {β : Type u_2} {f : αβ} {s : Finset α} {t' : Finset β} [DecidableEq β] :
        Decidable (Set.SurjOn f s t')
        Equations
        instance List.instDecidableBijOnToSetOfDecidableEq {α : Type u_1} {β : Type u_2} [DecidableEq α] {f : αβ} {s : Finset α} {t' : Finset β} [DecidableEq β] :
        Decidable (Set.BijOn f s t')
        Equations
        theorem Finset.pairwise_subtype_iff_pairwise_finset' {α : Type u_1} {β : Type u_2} {s : Finset α} (r : ββProp) (f : αβ) :
        Pairwise (r on fun (x : { x : α // x s }) => f x) (↑s).Pairwise (r on f)
        theorem Finset.pairwise_subtype_iff_pairwise_finset {α : Type u_1} {s : Finset α} (r : ααProp) :
        Pairwise (r on fun (x : { x : α // x s }) => x) (↑s).Pairwise r