Documentation

Mathlib.Data.Real.ENatENNReal

Coercion from ℕ∞ to ℝ≥0∞ #

In this file we define a coercion from ℕ∞ to ℝ≥0∞ and prove some basic lemmas about this map.

Coercion from ℕ∞ to ℝ≥0∞.

Equations

Coercion ℕ∞ → ℝ≥0∞ as an OrderEmbedding.

Equations

Coercion ℕ∞ → ℝ≥0∞ as a ring homomorphism.

Equations
@[simp]
@[simp]
theorem ENat.toENNReal_coe (n : ) :
n = n
@[simp]
theorem ENat.toENNReal_ofNat (n : ) [n.AtLeastTwo] :
@[simp]
theorem ENat.toENNReal_coe_eq_iff {m n : ℕ∞} :
m = n m = n
@[simp]
theorem ENat.toENNReal_le {m n : ℕ∞} :
m n m n
@[simp]
theorem ENat.toENNReal_lt {m n : ℕ∞} :
m < n m < n
@[simp]
theorem ENat.toENNReal_zero :
0 = 0
@[simp]
theorem ENat.toENNReal_add (m n : ℕ∞) :
(m + n) = m + n
@[simp]
theorem ENat.toENNReal_one :
1 = 1
@[simp]
theorem ENat.toENNReal_mul (m n : ℕ∞) :
(m * n) = m * n
@[simp]
theorem ENat.toENNReal_pow (x : ℕ∞) (n : ) :
(x ^ n) = x ^ n
@[simp]
theorem ENat.toENNReal_min (m n : ℕ∞) :
(m n) = m n
@[simp]
theorem ENat.toENNReal_max (m n : ℕ∞) :
(m n) = m n
@[simp]
theorem ENat.toENNReal_sub (m n : ℕ∞) :
(m - n) = m - n