Lemmas on finiteness of sets #
This file should contain lemmas that prove some result under the assumption of Set.Finite
.
If your proof has as result Set.Finite
, then it should go to a more specific file.
Tags #
finite sets
Properties #
Infinite sets #
Order properties #
theorem
Set.exists_min_image
{α : Type u}
{β : Type v}
[LinearOrder β]
(s : Set α)
(f : α → β)
(h1 : s.Finite)
:
s.Nonempty → ∃ a ∈ s, ∀ b ∈ s, f a ≤ f b
theorem
Set.exists_max_image
{α : Type u}
{β : Type v}
[LinearOrder β]
(s : Set α)
(f : α → β)
(h1 : s.Finite)
:
s.Nonempty → ∃ a ∈ s, ∀ b ∈ s, f b ≤ f a
theorem
Set.exists_lower_bound_image
{α : Type u}
{β : Type v}
[Nonempty α]
[LinearOrder β]
(s : Set α)
(f : α → β)
(h : s.Finite)
:
∃ (a : α), ∀ b ∈ s, f a ≤ f b
theorem
Set.exists_upper_bound_image
{α : Type u}
{β : Type v}
[Nonempty α]
[LinearOrder β]
(s : Set α)
(f : α → β)
(h : s.Finite)
:
∃ (a : α), ∀ b ∈ s, f b ≤ f a