Documentation

Mathlib.FieldTheory.Galois.Basic

Galois Extensions #

In this file we define Galois extensions as extensions which are both separable and normal.

Main definitions #

Main results #

Together, these two results prove the Galois correspondence.

class IsGalois (F : Type u_1) [Field F] (E : Type u_2) [Field E] [Algebra F E] :

A field extension E/F is Galois if it is both separable and normal. Note that in mathlib a separable extension of fields is by definition algebraic.

Stacks Tag 09I0

Instances
    theorem isGalois_iff {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] :
    instance IsGalois.self (F : Type u_1) [Field F] :
    Equations
    • =
    theorem IsGalois.integral (F : Type u_1) [Field F] {E : Type u_2} [Field E] [Algebra F E] [IsGalois F E] (x : E) :
    theorem IsGalois.separable (F : Type u_1) [Field F] {E : Type u_2} [Field E] [Algebra F E] [IsGalois F E] (x : E) :
    theorem IsGalois.splits (F : Type u_1) [Field F] {E : Type u_2} [Field E] [Algebra F E] [IsGalois F E] (x : E) :
    instance IsGalois.of_fixed_field (E : Type u_2) [Field E] (G : Type u_3) [Group G] [Finite G] [MulSemiringAction G E] :

    Let $E$ be a field. Let $G$ be a finite group acting on $E$. Then the extension $E / E^G$ is Galois.

    Stacks Tag 09I3 (first part)

    Equations
    • =
    theorem IsGalois.IntermediateField.AdjoinSimple.card_aut_eq_finrank (F : Type u_1) [Field F] (E : Type u_2) [Field E] [Algebra F E] [FiniteDimensional F E] {α : E} (hα : IsIntegral F α) (h_sep : IsSeparable F α) (h_splits : Polynomial.Splits (algebraMap F Fα) (minpoly F α)) :
    Fintype.card (Fα ≃ₐ[F] Fα) = Module.finrank F Fα
    theorem IsGalois.card_aut_eq_finrank (F : Type u_1) [Field F] (E : Type u_2) [Field E] [Algebra F E] [FiniteDimensional F E] [IsGalois F E] :

    Let $E / F$ be a finite extension of fields. If $E$ is Galois over $F$, then $|\text{Aut}(E/F)| = [E : F]$.

    Stacks Tag 09I1 ('only if' part)

    theorem IsGalois.tower_top_of_isGalois (F : Type u_1) (K : Type u_2) (E : Type u_3) [Field F] [Field K] [Field E] [Algebra F K] [Algebra F E] [Algebra K E] [IsScalarTower F K E] [IsGalois F E] :

    Let $E / K / F$ be a tower of field extensions. If $E$ is Galois over $F$, then $E$ is Galois over $K$.

    Stacks Tag 09I2

    @[instance 100]
    instance IsGalois.tower_top_intermediateField {F : Type u_1} {E : Type u_3} [Field F] [Field E] [Algebra F E] (K : IntermediateField F E) [IsGalois F E] :
    IsGalois (↥K) E
    Equations
    • =
    theorem isGalois_iff_isGalois_bot {F : Type u_1} {E : Type u_3} [Field F] [Field E] [Algebra F E] :
    theorem IsGalois.of_algEquiv {F : Type u_1} {E : Type u_3} [Field F] [Field E] {E' : Type u_4} [Field E'] [Algebra F E'] [Algebra F E] [IsGalois F E] (f : E ≃ₐ[F] E') :
    theorem AlgEquiv.transfer_galois {F : Type u_1} {E : Type u_3} [Field F] [Field E] {E' : Type u_4} [Field E'] [Algebra F E'] [Algebra F E] (f : E ≃ₐ[F] E') :
    theorem isGalois_iff_isGalois_top {F : Type u_1} {E : Type u_3} [Field F] [Field E] [Algebra F E] :
    instance isGalois_bot {F : Type u_1} {E : Type u_3} [Field F] [Field E] [Algebra F E] :
    Equations
    • =
    def FixedPoints.intermediateField {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (M : Type u_3) [Monoid M] [MulSemiringAction M E] [SMulCommClass M F E] :

    The intermediate field of fixed points fixed by a monoid action that commutes with the F-action on E.

    Equations
    Instances For
      def IntermediateField.fixedField {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (H : Subgroup (E ≃ₐ[F] E)) :

      The intermediate field fixed by a subgroup

      Equations
      Instances For
        def IntermediateField.fixingSubgroup {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (K : IntermediateField F E) :

        The subgroup fixing an intermediate field

        Equations
        Instances For
          theorem IntermediateField.le_iff_le {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (H : Subgroup (E ≃ₐ[F] E)) (K : IntermediateField F E) :
          K IntermediateField.fixedField H H K.fixingSubgroup
          def IntermediateField.fixingSubgroupEquiv {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (K : IntermediateField F E) :
          K.fixingSubgroup ≃* E ≃ₐ[K] E

          The fixing subgroup of K : IntermediateField F E is isomorphic to E ≃ₐ[K] E

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem IntermediateField.fixingSubgroup_fixedField {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (H : Subgroup (E ≃ₐ[F] E)) [FiniteDimensional F E] :
            (IntermediateField.fixedField H).fixingSubgroup = H
            instance IntermediateField.fixedField.smul {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (K : IntermediateField F E) :
            SMul K (IntermediateField.fixedField K.fixingSubgroup)
            Equations
            instance IntermediateField.fixedField.algebra {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (K : IntermediateField F E) :
            Algebra K (IntermediateField.fixedField K.fixingSubgroup)
            Equations
            instance IntermediateField.fixedField.isScalarTower {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (K : IntermediateField F E) :
            IsScalarTower (↥K) (↥(IntermediateField.fixedField K.fixingSubgroup)) E
            Equations
            • =
            theorem IsGalois.fixedField_fixingSubgroup {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (K : IntermediateField F E) [FiniteDimensional F E] [h : IsGalois F E] :
            IntermediateField.fixedField K.fixingSubgroup = K
            theorem IsGalois.card_fixingSubgroup_eq_finrank {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (K : IntermediateField F E) [DecidablePred fun (x : E ≃ₐ[F] E) => x K.fixingSubgroup] [FiniteDimensional F E] [IsGalois F E] :
            Fintype.card K.fixingSubgroup = Module.finrank (↥K) E

            The Galois correspondence from intermediate fields to subgroups.

            Stacks Tag 09DW

            Equations
            • IsGalois.intermediateFieldEquivSubgroup = { toFun := IntermediateField.fixingSubgroup, invFun := IntermediateField.fixedField, left_inv := , right_inv := , map_rel_iff' := }
            Instances For
              def IsGalois.galoisInsertionIntermediateFieldSubgroup {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] [FiniteDimensional F E] :
              GaloisInsertion (OrderDual.toDual IntermediateField.fixingSubgroup) (IntermediateField.fixedField OrderDual.toDual)

              The Galois correspondence as a GaloisInsertion

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def IsGalois.galoisCoinsertionIntermediateFieldSubgroup {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] [FiniteDimensional F E] [IsGalois F E] :
                GaloisCoinsertion (OrderDual.toDual IntermediateField.fixingSubgroup) (IntermediateField.fixedField OrderDual.toDual)

                The Galois correspondence as a GaloisCoinsertion

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem IsGalois.is_separable_splitting_field (F : Type u_1) [Field F] (E : Type u_2) [Field E] [Algebra F E] [FiniteDimensional F E] [IsGalois F E] :
                  ∃ (p : Polynomial F), p.Separable Polynomial.IsSplittingField F E p
                  theorem IsGalois.of_card_aut_eq_finrank (F : Type u_1) [Field F] (E : Type u_2) [Field E] [Algebra F E] [FiniteDimensional F E] (h : Fintype.card (E ≃ₐ[F] E) = Module.finrank F E) :

                  Let $E / F$ be a finite extension of fields. If $|\text{Aut}(E/F)| = [E : F]$, then $E$ is Galois over $F$.

                  Stacks Tag 09I1 ('if' part)

                  theorem IsGalois.of_separable_splitting_field_aux {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {p : Polynomial F} [hFE : FiniteDimensional F E] [sp : Polynomial.IsSplittingField F E p] (hp : p.Separable) (K : Type u_3) [Field K] [Algebra F K] [Algebra K E] [IsScalarTower F K E] {x : E} (hx : x p.aroots E) [Fintype (K →ₐ[F] E)] [Fintype ((IntermediateField.restrictScalars F Kx) →ₐ[F] E)] :
                  theorem IsGalois.of_separable_splitting_field {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {p : Polynomial F} [sp : Polynomial.IsSplittingField F E p] (hp : p.Separable) :
                  theorem IsGalois.tfae {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] [FiniteDimensional F E] :

                  Equivalent characterizations of a Galois extension of finite degree

                  instance IsGalois.normalClosure (k : Type u_1) (K : Type u_2) (F : Type u_3) [Field k] [Field K] [Field F] [Algebra k K] [Algebra k F] [IsGalois k F] :
                  IsGalois k (normalClosure k K F)

                  Let $F / K / k$ be a tower of field extensions. If $F$ is Galois over $k$, then the normal closure of $K$ over $k$ in $F$ is Galois over $k$.

                  Stacks Tag 0EXM

                  Equations
                  • =
                  @[instance 100]
                  instance IsAlgClosure.isGalois (k : Type u_1) (K : Type u_2) [Field k] [Field K] [Algebra k K] [IsAlgClosure k K] [CharZero k] :
                  Equations
                  • =