Documentation

Mathlib.LinearAlgebra.BilinearForm.Properties

Bilinear form #

This file defines various properties of bilinear forms, including reflexivity, symmetry, alternativity, adjoint, and non-degeneracy. For orthogonality, see LinearAlgebra/BilinearForm/Orthogonal.lean.

Notations #

Given any term B of type BilinForm, due to a coercion, can use the notation B x y to refer to the function field, ie. B x y = B.bilin x y.

In this file we use the following type variables:

References #

Tags #

Bilinear form,

Reflexivity, symmetry, and alternativity #

The proposition that a bilinear form is reflexive

Equations
theorem LinearMap.BilinForm.IsRefl.eq_zero {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} (H : B.IsRefl) {x y : M} :
(B x) y = 0(B y) x = 0
theorem LinearMap.BilinForm.IsRefl.neg {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B : LinearMap.BilinForm R₁ M₁} (hB : B.IsRefl) :
(-B).IsRefl
theorem LinearMap.BilinForm.IsRefl.smul {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {α : Type u_8} [CommSemiring α] [Module α R] [SMulCommClass R α R] [NoZeroSMulDivisors α R] (a : α) {B : LinearMap.BilinForm R M} (hB : B.IsRefl) :
(a B).IsRefl
theorem LinearMap.BilinForm.IsRefl.groupSMul {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {α : Type u_8} [Group α] [DistribMulAction α R] [SMulCommClass R α R] (a : α) {B : LinearMap.BilinForm R M} (hB : B.IsRefl) :
(a B).IsRefl
@[simp]
theorem LinearMap.BilinForm.isRefl_neg {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B : LinearMap.BilinForm R₁ M₁} :
(-B).IsRefl B.IsRefl

The proposition that a bilinear form is symmetric

Equations
theorem LinearMap.BilinForm.IsSymm.eq {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} (H : B.IsSymm) (x y : M) :
(B x) y = (B y) x
theorem LinearMap.BilinForm.IsSymm.isRefl {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} (H : B.IsSymm) :
B.IsRefl
theorem LinearMap.BilinForm.IsSymm.add {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B₁ B₂ : LinearMap.BilinForm R M} (hB₁ : B₁.IsSymm) (hB₂ : B₂.IsSymm) :
(B₁ + B₂).IsSymm
theorem LinearMap.BilinForm.IsSymm.sub {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B₁ B₂ : LinearMap.BilinForm R₁ M₁} (hB₁ : B₁.IsSymm) (hB₂ : B₂.IsSymm) :
(B₁ - B₂).IsSymm
theorem LinearMap.BilinForm.IsSymm.neg {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B : LinearMap.BilinForm R₁ M₁} (hB : B.IsSymm) :
(-B).IsSymm
theorem LinearMap.BilinForm.IsSymm.smul {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {α : Type u_8} [Monoid α] [DistribMulAction α R] [SMulCommClass R α R] (a : α) {B : LinearMap.BilinForm R M} (hB : B.IsSymm) :
(a B).IsSymm
theorem LinearMap.BilinForm.IsSymm.restrict {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} (b : B.IsSymm) (W : Submodule R M) :
(B.restrict W).IsSymm

The restriction of a symmetric bilinear form on a submodule is also symmetric.

@[simp]
theorem LinearMap.BilinForm.isSymm_neg {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B : LinearMap.BilinForm R₁ M₁} :
(-B).IsSymm B.IsSymm
theorem LinearMap.BilinForm.isSymm_iff_flip {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} :
B.IsSymm LinearMap.BilinForm.flipHom B = B

The proposition that a bilinear form is alternating

Equations
theorem LinearMap.BilinForm.IsAlt.self_eq_zero {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} (H : B.IsAlt) (x : M) :
(B x) x = 0
theorem LinearMap.BilinForm.IsAlt.neg_eq {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B₁ : LinearMap.BilinForm R₁ M₁} (H : B₁.IsAlt) (x y : M₁) :
-(B₁ x) y = (B₁ y) x
theorem LinearMap.BilinForm.IsAlt.isRefl {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B₁ : LinearMap.BilinForm R₁ M₁} (H : B₁.IsAlt) :
B₁.IsRefl
theorem LinearMap.BilinForm.IsAlt.eq_of_add_add_eq_zero {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} [IsCancelAdd R] {a b c : M} (H : B.IsAlt) (hAdd : a + b + c = 0) :
(B a) b = (B b) c
theorem LinearMap.BilinForm.IsAlt.add {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B₁ B₂ : LinearMap.BilinForm R M} (hB₁ : B₁.IsAlt) (hB₂ : B₂.IsAlt) :
(B₁ + B₂).IsAlt
theorem LinearMap.BilinForm.IsAlt.sub {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B₁ B₂ : LinearMap.BilinForm R₁ M₁} (hB₁ : B₁.IsAlt) (hB₂ : B₂.IsAlt) :
(B₁ - B₂).IsAlt
theorem LinearMap.BilinForm.IsAlt.neg {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B : LinearMap.BilinForm R₁ M₁} (hB : B.IsAlt) :
(-B).IsAlt
theorem LinearMap.BilinForm.IsAlt.smul {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {α : Type u_8} [Monoid α] [DistribMulAction α R] [SMulCommClass R α R] (a : α) {B : LinearMap.BilinForm R M} (hB : B.IsAlt) :
(a B).IsAlt
@[simp]
theorem LinearMap.BilinForm.isAlt_neg {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B : LinearMap.BilinForm R₁ M₁} :
(-B).IsAlt B.IsAlt

Linear adjoints #

def LinearMap.BilinForm.IsAdjointPair {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] (B : LinearMap.BilinForm R M) {M' : Type u_8} [AddCommMonoid M'] [Module R M'] (B' : LinearMap.BilinForm R M') (f : M →ₗ[R] M') (g : M' →ₗ[R] M) :

Given a pair of modules equipped with bilinear forms, this is the condition for a pair of maps between them to be mutually adjoint.

Equations
  • B.IsAdjointPair B' f g = ∀ ⦃x : M⦄ ⦃y : M'⦄, (B' (f x)) y = (B x) (g y)
theorem LinearMap.BilinForm.IsAdjointPair.eq {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {B' : LinearMap.BilinForm R M'} {f : M →ₗ[R] M'} {g : M' →ₗ[R] M} (h : B.IsAdjointPair B' f g) {x : M} {y : M'} :
(B' (f x)) y = (B x) (g y)
theorem LinearMap.BilinForm.isAdjointPair_iff_compLeft_eq_compRight {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} (F : LinearMap.BilinForm R M) (f g : Module.End R M) :
B.IsAdjointPair F f g F.compLeft f = B.compRight g
theorem LinearMap.BilinForm.isAdjointPair_zero {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {B' : LinearMap.BilinForm R M'} :
B.IsAdjointPair B' 0 0
theorem LinearMap.BilinForm.isAdjointPair_id {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} :
B.IsAdjointPair B 1 1
theorem LinearMap.BilinForm.IsAdjointPair.add {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {B' : LinearMap.BilinForm R M'} {f f' : M →ₗ[R] M'} {g g' : M' →ₗ[R] M} (h : B.IsAdjointPair B' f g) (h' : B.IsAdjointPair B' f' g') :
B.IsAdjointPair B' (f + f') (g + g')
theorem LinearMap.BilinForm.IsAdjointPair.sub {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B₁ : LinearMap.BilinForm R₁ M₁} {M₁' : Type u_9} [AddCommGroup M₁'] [Module R₁ M₁'] {B₁' : LinearMap.BilinForm R₁ M₁'} {f₁ f₁' : M₁ →ₗ[R₁] M₁'} {g₁ g₁' : M₁' →ₗ[R₁] M₁} (h : B₁.IsAdjointPair B₁' f₁ g₁) (h' : B₁.IsAdjointPair B₁' f₁' g₁') :
B₁.IsAdjointPair B₁' (f₁ - f₁') (g₁ - g₁')
theorem LinearMap.BilinForm.IsAdjointPair.smul {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {B₂' : LinearMap.BilinForm R M'} {f₂ : M →ₗ[R] M'} {g₂ : M' →ₗ[R] M} (c : R) (h : B.IsAdjointPair B₂' f₂ g₂) :
B.IsAdjointPair B₂' (c f₂) (c g₂)
theorem LinearMap.BilinForm.IsAdjointPair.comp {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {B' : LinearMap.BilinForm R M'} {f : M →ₗ[R] M'} {g : M' →ₗ[R] M} {M'' : Type u_10} [AddCommMonoid M''] [Module R M''] (B'' : LinearMap.BilinForm R M'') {f' : M' →ₗ[R] M''} {g' : M'' →ₗ[R] M'} (h : B.IsAdjointPair B' f g) (h' : B'.IsAdjointPair B'' f' g') :
B.IsAdjointPair B'' (f' ∘ₗ f) (g ∘ₗ g')
theorem LinearMap.BilinForm.IsAdjointPair.mul {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} {f g f' g' : Module.End R M} (h : B.IsAdjointPair B f g) (h' : B.IsAdjointPair B f' g') :
B.IsAdjointPair B (f * f') (g' * g)

The condition for an endomorphism to be "self-adjoint" with respect to a pair of bilinear forms on the underlying module. In the case that these two forms are identical, this is the usual concept of self adjointness. In the case that one of the forms is the negation of the other, this is the usual concept of skew adjointness.

Equations
  • B.IsPairSelfAdjoint F f = B.IsAdjointPair F f f

The set of pair-self-adjoint endomorphisms are a submodule of the type of all endomorphisms.

Equations
  • B₂.isPairSelfAdjointSubmodule F₂ = { carrier := {f : Module.End R M | B₂.IsPairSelfAdjoint F₂ f}, add_mem' := , zero_mem' := , smul_mem' := }
@[simp]
theorem LinearMap.BilinForm.mem_isPairSelfAdjointSubmodule {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] (B₂ F₂ : LinearMap.BilinForm R M) (f : Module.End R M) :
f B₂.isPairSelfAdjointSubmodule F₂ B₂.IsPairSelfAdjoint F₂ f
theorem LinearMap.BilinForm.isPairSelfAdjoint_equiv {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {M' : Type u_8} [AddCommMonoid M'] [Module R M'] (B₂ F₂ : LinearMap.BilinForm R M) (e : M' ≃ₗ[R] M) (f : Module.End R M) :
B₂.IsPairSelfAdjoint F₂ f (B₂.comp e e).IsPairSelfAdjoint (F₂.comp e e) (e.symm.conj f)

An endomorphism of a module is self-adjoint with respect to a bilinear form if it serves as an adjoint for itself.

Equations
  • B.IsSelfAdjoint f = B.IsAdjointPair B f f
def LinearMap.BilinForm.IsSkewAdjoint {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] (B₁ : LinearMap.BilinForm R₁ M₁) (f : Module.End R₁ M₁) :

An endomorphism of a module is skew-adjoint with respect to a bilinear form if its negation serves as an adjoint.

Equations
  • B₁.IsSkewAdjoint f = B₁.IsAdjointPair B₁ f (-f)
theorem LinearMap.BilinForm.isSkewAdjoint_iff_neg_self_adjoint {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] (B₁ : LinearMap.BilinForm R₁ M₁) (f : Module.End R₁ M₁) :
B₁.IsSkewAdjoint f (-B₁).IsAdjointPair B₁ f f

The set of self-adjoint endomorphisms of a module with bilinear form is a submodule. (In fact it is a Jordan subalgebra.)

Equations
  • B.selfAdjointSubmodule = B.isPairSelfAdjointSubmodule B
@[simp]
theorem LinearMap.BilinForm.mem_selfAdjointSubmodule {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] (B : LinearMap.BilinForm R M) (f : Module.End R M) :
f B.selfAdjointSubmodule B.IsSelfAdjoint f
def LinearMap.BilinForm.skewAdjointSubmodule {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] (B₁ : LinearMap.BilinForm R₁ M₁) :
Submodule R₁ (Module.End R₁ M₁)

The set of skew-adjoint endomorphisms of a module with bilinear form is a submodule. (In fact it is a Lie subalgebra.)

Equations
  • B₁.skewAdjointSubmodule = (-B₁).isPairSelfAdjointSubmodule B₁
@[simp]
theorem LinearMap.BilinForm.mem_skewAdjointSubmodule {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] (B₁ : LinearMap.BilinForm R₁ M₁) (f : Module.End R₁ M₁) :
f B₁.skewAdjointSubmodule B₁.IsSkewAdjoint f

A nondegenerate bilinear form is a bilinear form such that the only element that is orthogonal to every other element is 0; i.e., for all nonzero m in M, there exists n in M with B m n ≠ 0.

Note that for general (neither symmetric nor antisymmetric) bilinear forms this definition has a chirality; in addition to this "left" nondegeneracy condition one could define a "right" nondegeneracy condition that in the situation described, B n m ≠ 0. This variant definition is not currently provided in mathlib. In finite dimension either definition implies the other.

Equations
  • B.Nondegenerate = ∀ (m : M), (∀ (n : M), (B m) n = 0)m = 0

In a non-trivial module, zero is not non-degenerate.

theorem LinearMap.BilinForm.Nondegenerate.ne_zero {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] [Nontrivial M] {B : LinearMap.BilinForm R M} (h : B.Nondegenerate) :
B 0
theorem LinearMap.BilinForm.Nondegenerate.congr {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {B : LinearMap.BilinForm R M} (e : M ≃ₗ[R] M') (h : B.Nondegenerate) :
((LinearMap.BilinForm.congr e) B).Nondegenerate
@[simp]
theorem LinearMap.BilinForm.nondegenerate_congr_iff {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {B : LinearMap.BilinForm R M} (e : M ≃ₗ[R] M') :
((LinearMap.BilinForm.congr e) B).Nondegenerate B.Nondegenerate

A bilinear form is nondegenerate if and only if it has a trivial kernel.

theorem LinearMap.BilinForm.Nondegenerate.ker_eq_bot {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} (h : B.Nondegenerate) :
theorem LinearMap.BilinForm.compLeft_injective {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] (B : LinearMap.BilinForm R₁ M₁) (b : B.Nondegenerate) :
theorem LinearMap.BilinForm.isAdjointPair_unique_of_nondegenerate {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] (B : LinearMap.BilinForm R₁ M₁) (b : B.Nondegenerate) (φ ψ₁ ψ₂ : M₁ →ₗ[R₁] M₁) (hψ₁ : B.IsAdjointPair B ψ₁ φ) (hψ₂ : B.IsAdjointPair B ψ₂ φ) :
ψ₁ = ψ₂
noncomputable def LinearMap.BilinForm.toDual {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (b : B.Nondegenerate) :

Given a nondegenerate bilinear form B on a finite-dimensional vector space, B.toDual is the linear equivalence between a vector space and its dual.

Equations
theorem LinearMap.BilinForm.toDual_def {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} (b : LinearMap.SeparatingLeft B) {m n : V} :
((B.toDual b) m) n = (B m) n
@[simp]
theorem LinearMap.BilinForm.apply_toDual_symm_apply {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} {hB : B.Nondegenerate} (f : Module.Dual K V) (v : V) :
(B ((B.toDual hB).symm f)) v = f v
theorem LinearMap.BilinForm.Nondegenerate.flip {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} (hB : B.Nondegenerate) :
B.flip.Nondegenerate
theorem LinearMap.BilinForm.nonDegenerateFlip_iff {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} :
B.flip.Nondegenerate B.Nondegenerate
noncomputable def LinearMap.BilinForm.dualBasis {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] {ι : Type u_9} [DecidableEq ι] [Finite ι] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) (b : Basis ι K V) :
Basis ι K V

The B-dual basis B.dualBasis hB b to a finite basis b satisfies B (B.dualBasis hB b i) (b j) = B (b i) (B.dualBasis hB b j) = if i = j then 1 else 0, where B is a nondegenerate (symmetric) bilinear form and b is a finite basis.

Equations
  • B.dualBasis hB b = b.dualBasis.map (B.toDual hB).symm
@[simp]
theorem LinearMap.BilinForm.dualBasis_repr_apply {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] {ι : Type u_9} [DecidableEq ι] [Finite ι] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) (b : Basis ι K V) (x : V) (i : ι) :
((B.dualBasis hB b).repr x) i = (B x) (b i)
theorem LinearMap.BilinForm.apply_dualBasis_left {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] {ι : Type u_9} [DecidableEq ι] [Finite ι] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) (b : Basis ι K V) (i j : ι) :
(B ((B.dualBasis hB b) i)) (b j) = if j = i then 1 else 0
theorem LinearMap.BilinForm.apply_dualBasis_right {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] {ι : Type u_9} [DecidableEq ι] [Finite ι] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) (sym : B.IsSymm) (b : Basis ι K V) (i j : ι) :
(B (b i)) ((B.dualBasis hB b) j) = if i = j then 1 else 0
@[simp]
theorem LinearMap.BilinForm.dualBasis_dualBasis_flip {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) {ι : Type u_10} [Finite ι] [DecidableEq ι] (b : Basis ι K V) :
B.dualBasis hB (B.flip.dualBasis b) = b
@[simp]
theorem LinearMap.BilinForm.dualBasis_flip_dualBasis {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) {ι : Type u_10} [Finite ι] [DecidableEq ι] [FiniteDimensional K V] (b : Basis ι K V) :
B.flip.dualBasis (B.dualBasis hB b) = b
@[simp]
theorem LinearMap.BilinForm.dualBasis_dualBasis {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) (hB' : B.IsSymm) {ι : Type u_10} [Finite ι] [DecidableEq ι] [FiniteDimensional K V] (b : Basis ι K V) :
B.dualBasis hB (B.dualBasis hB b) = b
noncomputable def LinearMap.BilinForm.symmCompOfNondegenerate {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B₁ B₂ : LinearMap.BilinForm K V) (b₂ : B₂.Nondegenerate) :

Given bilinear forms B₁, B₂ where B₂ is nondegenerate, symmCompOfNondegenerate is the linear map B₂ ∘ B₁.

Equations
  • B₁.symmCompOfNondegenerate B₂ b₂ = (B₂.toDual b₂).symm ∘ₗ B₁
theorem LinearMap.BilinForm.comp_symmCompOfNondegenerate_apply {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B₁ : LinearMap.BilinForm K V) {B₂ : LinearMap.BilinForm K V} (b₂ : B₂.Nondegenerate) (v : V) :
B₂ ((B₁.symmCompOfNondegenerate B₂ b₂) v) = B₁ v
@[simp]
theorem LinearMap.BilinForm.symmCompOfNondegenerate_left_apply {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B₁ : LinearMap.BilinForm K V) {B₂ : LinearMap.BilinForm K V} (b₂ : B₂.Nondegenerate) (v w : V) :
(B₂ ((B₁.symmCompOfNondegenerate B₂ b₂) w)) v = (B₁ w) v
noncomputable def LinearMap.BilinForm.leftAdjointOfNondegenerate {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (b : B.Nondegenerate) (φ : V →ₗ[K] V) :

Given the nondegenerate bilinear form B and the linear map φ, leftAdjointOfNondegenerate provides the left adjoint of φ with respect to B. The lemma proving this property is BilinForm.isAdjointPairLeftAdjointOfNondegenerate.

Equations
  • B.leftAdjointOfNondegenerate b φ = (B.compRight φ).symmCompOfNondegenerate B b
theorem LinearMap.BilinForm.isAdjointPairLeftAdjointOfNondegenerate {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (b : B.Nondegenerate) (φ : V →ₗ[K] V) :
B.IsAdjointPair B (B.leftAdjointOfNondegenerate b φ) φ
theorem LinearMap.BilinForm.isAdjointPair_iff_eq_of_nondegenerate {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (b : B.Nondegenerate) (ψ φ : V →ₗ[K] V) :
B.IsAdjointPair B ψ φ ψ = B.leftAdjointOfNondegenerate b φ

Given the nondegenerate bilinear form B, the linear map φ has a unique left adjoint given by BilinForm.leftAdjointOfNondegenerate.