Documentation

Mathlib.LinearAlgebra.RootSystem.Finite.CanonicalBilinear

The canonical bilinear form on a finite root pairing #

Given a finite root pairing, we define a canonical map from weight space to coweight space, and the corresponding bilinear form. This form is symmetric and Weyl-invariant, and if the base ring is linearly ordered, then the form is root-positive, positive-semidefinite on the weight space, and positive-definite on the span of roots. From these facts, it is easy to show that Coxeter weights in a finite root pairing are bounded above by 4. Thus, the pairings of roots and coroots in a crystallographic root pairing are restricted to a small finite set of possibilities. Another application is to the faithfulness of the Weyl group action on roots, and finiteness of the Weyl group.

Main definitions: #

References: #

Main results: #

TODO (possibly in other files) #

def RootPairing.Polarization {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [Fintype ι] [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) :

An invariant linear map from weight space to coweight space.

Equations
Instances For
    @[simp]
    theorem RootPairing.Polarization_apply {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [Fintype ι] [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) (x : M) :
    P.Polarization x = i : ι, (P.coroot' i) x P.coroot i
    def RootPairing.CoPolarization {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [Fintype ι] [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) :

    An invariant linear map from coweight space to weight space.

    Equations
    Instances For
      @[simp]
      theorem RootPairing.CoPolarization_apply {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [Fintype ι] [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) (x : N) :
      P.CoPolarization x = i : ι, (P.root' i) x P.root i
      theorem RootPairing.CoPolarization_eq {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [Fintype ι] [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) :
      P.CoPolarization = P.flip.Polarization
      def RootPairing.RootForm {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [Fintype ι] [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) :

      An invariant inner product on the weight space.

      Equations
      Instances For
        def RootPairing.CorootForm {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [Fintype ι] [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) :

        An invariant inner product on the coweight space.

        Equations
        Instances For
          theorem RootPairing.rootForm_apply_apply {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [Fintype ι] [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) (x y : M) :
          (P.RootForm x) y = i : ι, (P.coroot' i) x * (P.coroot' i) y
          theorem RootPairing.rootForm_symmetric {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [Fintype ι] [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) :
          LinearMap.IsSymm P.RootForm
          @[simp]
          theorem RootPairing.rootForm_reflection_reflection_apply {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [Fintype ι] [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) (i : ι) (x y : M) :
          (P.RootForm ((P.reflection i) x)) ((P.reflection i) y) = (P.RootForm x) y
          theorem RootPairing.rootForm_self_smul_coroot {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [Fintype ι] [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) (i : ι) :
          (P.RootForm (P.root i)) (P.root i) P.coroot i = 2 P.Polarization (P.root i)

          This is SGA3 XXI Lemma 1.2.1 (10), key for proving nondegeneracy and positivity.

          theorem RootPairing.corootForm_self_smul_root {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [Fintype ι] [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) (i : ι) :
          (P.CorootForm (P.coroot i)) (P.coroot i) P.root i = 2 P.CoPolarization (P.coroot i)
          theorem RootPairing.rootForm_self_sum_of_squares {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [Fintype ι] [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) (x : M) :
          IsSumSq ((P.RootForm x) x)
          theorem RootPairing.rootForm_root_self {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [Fintype ι] [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) (j : ι) :
          (P.RootForm (P.root j)) (P.root j) = i : ι, P.pairing j i * P.pairing j i