Typeclasses for commuting heterogeneous operations #
The three classes in this file are for two-argument functions where one input is of type α
,
the output is of type β
and the other input is of type α
or β
.
They express the property that permuting arguments of type α
does not change the result.
Main definitions #
IsSymmOp
: forop : α → α → β
,op a b = op b a
.LeftCommutative
: forop : α → β → β
,op a₁ (op a₂ b) = op a₂ (op a₁ b)
.RightCommutative
: forop : β → α → β
,op (op b a₁) a₂ = op (op b a₂) a₁
.
IsSymmOp op
where op : α → α → β
says that op
is a symmetric operation,
i.e. op a b = op b a
.
It is the natural generalisation of Std.Commutative
(β = α
) and IsSymm
(β = Prop
).
- symm_op : ∀ (a b : α), op a b = op b a
A symmetric operation satisfies
op a b = op b a
.
Instances
LeftCommutative op
where op : α → β → β
says that op
is a left-commutative operation,
i.e. op a₁ (op a₂ b) = op a₂ (op a₁ b)
.
- left_comm : ∀ (a₁ a₂ : α) (b : β), op a₁ (op a₂ b) = op a₂ (op a₁ b)
A left-commutative operation satisfies
op a₁ (op a₂ b) = op a₂ (op a₁ b)
.
Instances
RightCommutative op
where op : β → α → β
says that op
is a right-commutative operation,
i.e. op (op b a₁) a₂ = op (op b a₂) a₁
.
- right_comm : ∀ (b : β) (a₁ a₂ : α), op (op b a₁) a₂ = op (op b a₂) a₁
A right-commutative operation satisfies
op (op b a₁) a₂ = op (op b a₂) a₁
.
Instances
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯