Documentation

Mathlib.ModelTheory.PartialEquiv

Partial Isomorphisms #

This file defines partial isomorphisms between first-order structures.

Main Definitions #

Main Results #

structure FirstOrder.Language.PartialEquiv (L : FirstOrder.Language) (M : Type w) (N : Type w') [L.Structure M] [L.Structure N] :
Type (max w w')

A partial L-equivalence, implemented as an equivalence between substructures.

  • dom : L.Substructure M

    The substructure which is the domain of the equivalence.

  • cod : L.Substructure N

    The substructure which is the codomain of the equivalence.

  • toEquiv : L.Equiv self.dom self.cod

    The equivalence between the two subdomains.

A partial L-equivalence, implemented as an equivalence between substructures.

Equations
  • One or more equations did not get rendered due to their size.
noncomputable instance FirstOrder.Language.PartialEquiv.instInhabited_self {L : FirstOrder.Language} {M : Type w} [L.Structure M] :
Inhabited (L.PartialEquiv M M)
Equations
def FirstOrder.Language.PartialEquiv.symm {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.PartialEquiv M N) :
L.PartialEquiv N M

Maps to the symmetric partial equivalence.

Equations
  • f.symm = { dom := f.cod, cod := f.dom, toEquiv := f.toEquiv.symm }
@[simp]
theorem FirstOrder.Language.PartialEquiv.symm_symm {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.PartialEquiv M N) :
f.symm.symm = f
@[simp]
theorem FirstOrder.Language.PartialEquiv.symm_apply {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.PartialEquiv M N) (x : f.cod) :
f.symm.toEquiv x = f.toEquiv.symm x
instance FirstOrder.Language.PartialEquiv.instLE {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
LE (L.PartialEquiv M N)
Equations
  • One or more equations did not get rendered due to their size.
theorem FirstOrder.Language.PartialEquiv.le_def {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f g : L.PartialEquiv M N) :
f g ∃ (h : f.dom g.dom), g.cod.subtype.comp (g.toEquiv.toEmbedding.comp (FirstOrder.Language.Substructure.inclusion h)) = f.cod.subtype.comp f.toEquiv.toEmbedding
theorem FirstOrder.Language.PartialEquiv.dom_le_dom {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f g : L.PartialEquiv M N} :
f gf.dom g.dom
theorem FirstOrder.Language.PartialEquiv.cod_le_cod {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f g : L.PartialEquiv M N} :
f gf.cod g.cod
theorem FirstOrder.Language.PartialEquiv.subtype_toEquiv_inclusion {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f g : L.PartialEquiv M N} (h : f g) :
g.cod.subtype.comp (g.toEquiv.toEmbedding.comp (FirstOrder.Language.Substructure.inclusion )) = f.cod.subtype.comp f.toEquiv.toEmbedding
theorem FirstOrder.Language.PartialEquiv.toEquiv_inclusion {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f g : L.PartialEquiv M N} (h : f g) :
g.toEquiv.toEmbedding.comp (FirstOrder.Language.Substructure.inclusion ) = (FirstOrder.Language.Substructure.inclusion ).comp f.toEquiv.toEmbedding
theorem FirstOrder.Language.PartialEquiv.toEquiv_inclusion_apply {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f g : L.PartialEquiv M N} (h : f g) (x : f.dom) :
theorem FirstOrder.Language.PartialEquiv.le_iff {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f g : L.PartialEquiv M N} :
f g ∃ (dom_le_dom : f.dom g.dom) (cod_le_cod : f.cod g.cod), ∀ (x : f.dom), (FirstOrder.Language.Substructure.inclusion cod_le_cod) (f.toEquiv x) = g.toEquiv ((FirstOrder.Language.Substructure.inclusion dom_le_dom) x)
theorem FirstOrder.Language.PartialEquiv.le_trans {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f g h : L.PartialEquiv M N) :
f gg hf h
instance FirstOrder.Language.PartialEquiv.instPartialOrder {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
PartialOrder (L.PartialEquiv M N)
Equations
theorem FirstOrder.Language.PartialEquiv.symm_le_symm {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f g : L.PartialEquiv M N} (hfg : f g) :
f.symm g.symm
theorem FirstOrder.Language.PartialEquiv.monotone_symm {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
Monotone fun (f : L.PartialEquiv M N) => f.symm
theorem FirstOrder.Language.PartialEquiv.symm_le_iff {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f : L.PartialEquiv M N} {g : L.PartialEquiv N M} :
f.symm g f g.symm
theorem FirstOrder.Language.PartialEquiv.ext {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f g : L.PartialEquiv M N} (h_dom : f.dom = g.dom) :
(∀ (x : M) (h : x f.dom), f.cod.subtype (f.toEquiv x, h) = g.cod.subtype (g.toEquiv x, ))f = g
theorem FirstOrder.Language.PartialEquiv.ext_iff {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f g : L.PartialEquiv M N} :
f = g ∃ (h_dom : f.dom = g.dom), ∀ (x : M) (h : x f.dom), f.cod.subtype (f.toEquiv x, h) = g.cod.subtype (g.toEquiv x, )
theorem FirstOrder.Language.PartialEquiv.monotone_dom {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
Monotone fun (f : L.PartialEquiv M N) => f.dom
theorem FirstOrder.Language.PartialEquiv.monotone_cod {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
Monotone fun (f : L.PartialEquiv M N) => f.cod
noncomputable def FirstOrder.Language.PartialEquiv.domRestrict {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.PartialEquiv M N) {A : L.Substructure M} (h : A f.dom) :
L.PartialEquiv M N

Restriction of a partial equivalence to a substructure of the domain.

Equations
  • One or more equations did not get rendered due to their size.
theorem FirstOrder.Language.PartialEquiv.domRestrict_le {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.PartialEquiv M N) {A : L.Substructure M} (h : A f.dom) :
f.domRestrict h f
theorem FirstOrder.Language.PartialEquiv.le_domRestrict {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f g : L.PartialEquiv M N) {A : L.Substructure M} (hf : f.dom A) (hg : A g.dom) (hfg : f g) :
f g.domRestrict hg
noncomputable def FirstOrder.Language.PartialEquiv.codRestrict {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.PartialEquiv M N) {A : L.Substructure N} (h : A f.cod) :
L.PartialEquiv M N

Restriction of a partial equivalence to a substructure of the codomain.

Equations
  • f.codRestrict h = (f.symm.domRestrict h).symm
theorem FirstOrder.Language.PartialEquiv.codRestrict_le {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.PartialEquiv M N) {A : L.Substructure N} (h : A f.cod) :
f.codRestrict h f
theorem FirstOrder.Language.PartialEquiv.le_codRestrict {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f g : L.PartialEquiv M N) {A : L.Substructure N} (hf : f.cod A) (hg : A g.cod) (hfg : f g) :
f g.codRestrict hg
def FirstOrder.Language.PartialEquiv.toEmbedding {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.PartialEquiv M N) :
L.Embedding (↥f.dom) N

A partial equivalence as an embedding from its domain.

Equations
  • f.toEmbedding = f.cod.subtype.comp f.toEquiv.toEmbedding
@[simp]
theorem FirstOrder.Language.PartialEquiv.toEmbedding_apply {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f : L.PartialEquiv M N} (m : f.dom) :
f.toEmbedding m = (f.toEquiv m)
def FirstOrder.Language.PartialEquiv.toEmbeddingOfEqTop {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f : L.PartialEquiv M N} (h : f.dom = ) :
L.Embedding M N

Given a partial equivalence which has the whole structure as domain, returns the corresponding embedding.

Equations
@[simp]
theorem FirstOrder.Language.PartialEquiv.toEmbeddingOfEqTop__apply {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f : L.PartialEquiv M N} (h : f.dom = ) (m : M) :
(FirstOrder.Language.PartialEquiv.toEmbeddingOfEqTop h) m = (f.toEquiv m, )
def FirstOrder.Language.PartialEquiv.toEquivOfEqTop {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f : L.PartialEquiv M N} (h_dom : f.dom = ) (h_cod : f.cod = ) :
L.Equiv M N

Given a partial equivalence which has the whole structure as domain and as codomain, returns the corresponding equivalence.

Equations
@[simp]
theorem FirstOrder.Language.PartialEquiv.toEquivOfEqTop_toEmbedding {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f : L.PartialEquiv M N} (h_dom : f.dom = ) (h_cod : f.cod = ) :
theorem FirstOrder.Language.PartialEquiv.dom_fg_iff_cod_fg {L : FirstOrder.Language} {M : Type w} [L.Structure M] {N : Type u_1} [L.Structure N] (f : L.PartialEquiv M N) :
f.dom.FG f.cod.FG
noncomputable def FirstOrder.Language.Embedding.toPartialEquiv {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Embedding M N) :
L.PartialEquiv M N

Given an embedding, returns the corresponding partial equivalence with as domain.

Equations
  • f.toPartialEquiv = { dom := , cod := f.toHom.range, toEquiv := f.equivRange.comp FirstOrder.Language.Substructure.topEquiv }
theorem FirstOrder.Language.Embedding.toPartialEquiv_injective {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
Function.Injective fun (f : L.Embedding M N) => f.toPartialEquiv
@[simp]
theorem FirstOrder.Language.Embedding.toEmbedding_toPartialEquiv {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.Embedding M N) :
@[simp]
theorem FirstOrder.Language.Embedding.toPartialEquiv_toEmbedding {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {f : L.PartialEquiv M N} (h : f.dom = ) :
instance FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureDomCoeOrderHomPartialEquivEmbeddingInclusion {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {ι : Type u_1} [Preorder ι] (S : ι →o L.PartialEquiv M N) :
DirectedSystem (fun (i : ι) => (S i).dom) fun (x x_1 : ι) (h : x x_1) => (FirstOrder.Language.Substructure.inclusion )
Equations
  • =
instance FirstOrder.Language.DirectLimit.instDirectedSystemSubtypeMemSubstructureCodCoeOrderHomPartialEquivEmbeddingInclusion {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {ι : Type u_1} [Preorder ι] (S : ι →o L.PartialEquiv M N) :
DirectedSystem (fun (i : ι) => (S i).cod) fun (x x_1 : ι) (h : x x_1) => (FirstOrder.Language.Substructure.inclusion )
Equations
  • =
noncomputable def FirstOrder.Language.DirectLimit.partialEquivLimit {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {ι : Type u_1} [Preorder ι] [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] (S : ι →o L.PartialEquiv M N) :
L.PartialEquiv M N

The limit of a directed system of PartialEquivs.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem FirstOrder.Language.DirectLimit.dom_partialEquivLimit {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {ι : Type u_1} [Preorder ι] [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] (S : ι →o L.PartialEquiv M N) :
@[simp]
theorem FirstOrder.Language.DirectLimit.cod_partialEquivLimit {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {ι : Type u_1} [Preorder ι] [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] (S : ι →o L.PartialEquiv M N) :
@[simp]
theorem FirstOrder.Language.DirectLimit.partialEquivLimit_comp_inclusion {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {ι : Type u_1} [Preorder ι] [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] (S : ι →o L.PartialEquiv M N) {i : ι} :
theorem FirstOrder.Language.DirectLimit.le_partialEquivLimit {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] {ι : Type u_1} [Preorder ι] [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] (S : ι →o L.PartialEquiv M N) (i : ι) :
@[reducible, inline]
abbrev FirstOrder.Language.FGEquiv (L : FirstOrder.Language) (M : Type w) (N : Type w') [L.Structure M] [L.Structure N] :
Type (max 0 w w')

The type of equivalences between finitely generated substructures.

Equations
  • L.FGEquiv M N = { f : L.PartialEquiv M N // f.dom.FG }
def FirstOrder.Language.IsExtensionPair (L : FirstOrder.Language) (M : Type w) (N : Type w') [L.Structure M] [L.Structure N] :

Two structures M and N form an extension pair if the domain of any finitely-generated map from M to N can be extended to include any element of M.

Equations
  • L.IsExtensionPair M N = ∀ (f : L.FGEquiv M N) (m : M), ∃ (g : L.FGEquiv M N), m (↑g).dom f g
instance FirstOrder.Language.inhabited_self_FGEquiv {L : FirstOrder.Language} {M : Type w} [L.Structure M] :
Inhabited (L.FGEquiv M M)
Equations
instance FirstOrder.Language.inhabited_FGEquiv_of_IsEmpty_Constants_and_Relations {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [IsEmpty L.Constants] [IsEmpty (L.Relations 0)] [L.Structure N] :
Inhabited (L.FGEquiv M N)
Equations
  • One or more equations did not get rendered due to their size.
def FirstOrder.Language.FGEquiv.symm {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.FGEquiv M N) :
L.FGEquiv N M

Maps to the symmetric finitely-generated partial equivalence.

Equations
  • f.symm = (↑f).symm,
@[simp]
theorem FirstOrder.Language.FGEquiv.symm_coe {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (f : L.FGEquiv M N) :
f.symm = (↑f).symm
theorem FirstOrder.Language.isExtensionPair_iff_cod {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
L.IsExtensionPair M N ∀ (f : L.FGEquiv N M) (m : M), ∃ (g : L.FGEquiv N M), m (↑g).cod f g
theorem FirstOrder.Language.isExtensionPair_iff_exists_embedding_closure_singleton_sup {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
L.IsExtensionPair M N ∀ (S : L.Substructure M), S.FG∀ (f : L.Embedding (↥S) N) (m : M), ∃ (g : L.Embedding (↥((FirstOrder.Language.Substructure.closure L).toFun {m} S)) N), f = g.comp (FirstOrder.Language.Substructure.inclusion )

An alternate characterization of an extension pair is that every finitely generated partial isomorphism can be extended to include any particular element of the domain.

theorem FirstOrder.Language.IsExtensionPair.cod {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] :
L.IsExtensionPair M N∀ (f : L.FGEquiv N M) (m : M), ∃ (g : L.FGEquiv N M), m (↑g).cod f g

Alias of the forward direction of FirstOrder.Language.isExtensionPair_iff_cod.

def FirstOrder.Language.IsExtensionPair.definedAtLeft {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (h : L.IsExtensionPair M N) (m : M) :
Order.Cofinal (L.FGEquiv M N)

The cofinal set of finite equivalences with a given element in their domain.

Equations
  • h.definedAtLeft m = { carrier := {f : L.FGEquiv M N | m (↑f).dom}, mem_gt := }
def FirstOrder.Language.IsExtensionPair.definedAtRight {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (h : L.IsExtensionPair N M) (n : N) :
Order.Cofinal (L.FGEquiv M N)

The cofinal set of finite equivalences with a given element in their codomain.

Equations
  • h.definedAtRight n = { carrier := {f : L.FGEquiv M N | n (↑f).cod}, mem_gt := }
theorem FirstOrder.Language.embedding_from_cg {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (M_cg : FirstOrder.Language.Structure.CG L M) (g : L.FGEquiv M N) (H : L.IsExtensionPair M N) :
∃ (f : L.Embedding M N), g f.toPartialEquiv

For a countably generated structure M and a structure N, if any partial equivalence between finitely generated substructures can be extended to any element in the domain, then there exists an embedding of M in N.

theorem FirstOrder.Language.equiv_between_cg {L : FirstOrder.Language} {M : Type w} {N : Type w'} [L.Structure M] [L.Structure N] (M_cg : FirstOrder.Language.Structure.CG L M) (N_cg : FirstOrder.Language.Structure.CG L N) (g : L.FGEquiv M N) (ext_dom : L.IsExtensionPair M N) (ext_cod : L.IsExtensionPair N M) :
∃ (f : L.Equiv M N), g f.toEmbedding.toPartialEquiv

For two countably generated structure M and N, if any PartialEquiv between finitely generated substructures can be extended to any element in the domain and to any element in the codomain, then there exists an equivalence between M and N.