Documentation

Mathlib.Order.Category.HeytAlg

The category of Heyting algebras #

This file defines HeytAlg, the category of Heyting algebras.

def HeytAlg :
Type (u_1 + 1)

The category of Heyting algebras.

Equations
Equations
Equations
  • X.instHeytingAlgebraα = X.str
def HeytAlg.of (α : Type u_1) [HeytingAlgebra α] :

Construct a bundled HeytAlg from a HeytingAlgebra.

Equations
@[simp]
theorem HeytAlg.coe_of (α : Type u_1) [HeytingAlgebra α] :
(HeytAlg.of α) = α
Equations
  • One or more equations did not get rendered due to their size.
instance HeytAlg.instFunLikeHomαHeytingAlgebra {X Y : HeytAlg} :
FunLike (X Y) X Y
Equations
  • HeytAlg.instFunLikeHomαHeytingAlgebra = HeytingHom.instFunLike
Equations
  • =
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem HeytAlg.hasForgetToLat_forget₂_map_toLatticeHom_toSupHom_toFun {X Y : HeytAlg} (f : X Y) (a : X) :
(CategoryTheory.HasForget₂.forget₂.map f).toSupHom a = f a
@[simp]
theorem HeytAlg.hasForgetToLat_forget₂_obj (X : HeytAlg) :
CategoryTheory.HasForget₂.forget₂.obj X = BddDistLat.of X
def HeytAlg.Iso.mk {α β : HeytAlg} (e : α ≃o β) :
α β

Constructs an isomorphism of Heyting algebras from an order isomorphism between them.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem HeytAlg.Iso.mk_inv_toFun {α β : HeytAlg} (e : α ≃o β) (a : β) :
(HeytAlg.Iso.mk e).inv a = e.symm a
@[simp]
theorem HeytAlg.Iso.mk_hom_toFun {α β : HeytAlg} (e : α ≃o β) (a : α) :
(HeytAlg.Iso.mk e).hom a = e a