Category of partial orders #
This defines PartOrd
, the category of partial orders with monotone maps.
The category of partially ordered types.
Equations
Equations
- PartOrd.instCoeSortType = CategoryTheory.Bundled.coeSort
Construct a bundled PartOrd from the underlying type and typeclass.
Equations
Equations
- PartOrd.instInhabited = { default := PartOrd.of PUnit.{?u.3 + 1} }
Equations
- α.instPartialOrderα = α.str
Constructs an equivalence between partial orders from an order isomorphism between them.
Equations
- PartOrd.Iso.mk e = { hom := ↑e, inv := ↑e.symm, hom_inv_id := ⋯, inv_hom_id := ⋯ }
@[simp]
@[simp]
OrderDual
as a functor.
Equations
- PartOrd.dual = { obj := fun (X : PartOrd) => PartOrd.of (↑X)ᵒᵈ, map := fun {X Y : PartOrd} => ⇑OrderHom.dual, map_id := PartOrd.dual.proof_1, map_comp := @PartOrd.dual.proof_2 }
@[simp]
Antisymmetrization
as a functor. It is the free functor.
Equations
- One or more equations did not get rendered due to their size.
preordToPartOrd
is left adjoint to the forgetful functor, meaning it is the free
functor from Preord
to PartOrd
.
Equations
- One or more equations did not get rendered due to their size.
def
preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd :
preordToPartOrd.comp PartOrd.dual ≅ Preord.dual.comp preordToPartOrd
PreordToPartOrd
and OrderDual
commute.
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_inv_app_coe
(X : Preord)
(a : ↑((Preord.dual.comp preordToPartOrd).obj X))
:
(preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd.inv.app X) a = (OrderIso.dualAntisymmetrization ↑X).symm a
theorem
preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd_hom_app_coe
(X : Preord)
(a : ↑((preordToPartOrd.comp PartOrd.dual).obj X))
:
(preordToPartOrdCompToDualIsoToDualCompPreordToPartOrd.hom.app X) a = (OrderIso.dualAntisymmetrization ↑X) a