Documentation

Mathlib.Probability.Kernel.RadonNikodym

Radon-Nikodym derivative and Lebesgue decomposition for kernels #

Let α and γ be two measurable space, where either α is countable or γ is countably generated. Let κ, η : Kernel α γ be finite kernels. Then there exists a function Kernel.rnDeriv κ η : α → γ → ℝ≥0∞ jointly measurable on α × γ and a kernel Kernel.singularPart κ η : Kernel α γ such that

Furthermore, the sets {a | κ a ≪ η a} and {a | κ a ⟂ₘ η a} are measurable.

When γ is countably generated, the construction of the derivative starts from Kernel.density: for two finite kernels κ' : Kernel α (γ × β) and η' : Kernel α γ with fst κ' ≤ η', the function density κ' η' : α → γ → Set β → ℝ is jointly measurable in the first two arguments and satisfies that for all a : α and all measurable sets s : Set β and A : Set γ, ∫ x in A, density κ' η' a x s ∂(η' a) = (κ' a (A ×ˢ s)).toReal. We use that definition for β = Unit and κ' = map κ (fun a ↦ (a, ())). We can't choose η' = η in general because we might not have κ ≤ η, but if we could, we would get a measurable function f with the property κ = withDensity η f, which is the decomposition we want for κ ≤ η. To circumvent that difficulty, we take η' = κ + η and thus define rnDerivAux κ η. Finally, rnDeriv κ η a x is given by ENNReal.ofReal (rnDerivAux κ (κ + η) a x) / ENNReal.ofReal (1 - rnDerivAux κ (κ + η) a x). Up to some conversions between and ℝ≥0, the singular part is withDensity (κ + η) (rnDerivAux κ (κ + η) - (1 - rnDerivAux κ (κ + η)) * rnDeriv κ η).

The countably generated measurable space assumption is not needed to have a decomposition for measures, but the additional difficulty with kernels is to obtain joint measurability of the derivative. This is why we can't simply define rnDeriv κ η by a ↦ (κ a).rnDeriv (ν a) everywhere unless α is countable (although rnDeriv κ η has that value almost everywhere). See the construction of Kernel.density for details on how the countably generated hypothesis is used.

Main definitions #

Main statements #

References #

Theorem 1.28 in [O. Kallenberg, Random Measures, Theory and Applications][kallenberg2017].

TODO #

noncomputable def ProbabilityTheory.Kernel.rnDerivAux {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) (a : α) (x : γ) :

Auxiliary function used to define ProbabilityTheory.Kernel.rnDeriv and ProbabilityTheory.Kernel.singularPart.

This has the properties we want for a Radon-Nikodym derivative only if κ ≪ ν. The definition of rnDeriv κ η will be built from rnDerivAux κ (κ + η).

Equations
  • κ.rnDerivAux η a x = if hα : Countable α then ((κ a).rnDeriv (η a) x).toReal else (κ.map fun (a : γ) => (a, ())).density η a x Set.univ
Instances For
    theorem ProbabilityTheory.Kernel.rnDerivAux_nonneg {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {κ η : ProbabilityTheory.Kernel α γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (hκη : κ η) {a : α} {x : γ} :
    0 κ.rnDerivAux η a x
    theorem ProbabilityTheory.Kernel.rnDerivAux_le_one {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {κ η : ProbabilityTheory.Kernel α γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] [ProbabilityTheory.IsFiniteKernel η] (hκη : κ η) {a : α} :
    κ.rnDerivAux η a ≤ᵐ[η a] 1
    theorem ProbabilityTheory.Kernel.measurable_rnDerivAux {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) :
    Measurable fun (p : α × γ) => κ.rnDerivAux η p.1 p.2
    theorem ProbabilityTheory.Kernel.measurable_rnDerivAux_right {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) (a : α) :
    Measurable fun (x : γ) => κ.rnDerivAux η a x
    theorem ProbabilityTheory.Kernel.setLIntegral_rnDerivAux {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (a : α) {s : Set γ} (hs : MeasurableSet s) :
    ∫⁻ (x : γ) in s, ENNReal.ofReal (κ.rnDerivAux (κ + η) a x)(κ + η) a = (κ a) s
    @[deprecated ProbabilityTheory.Kernel.setLIntegral_rnDerivAux]
    theorem ProbabilityTheory.Kernel.set_lintegral_rnDerivAux {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (a : α) {s : Set γ} (hs : MeasurableSet s) :
    ∫⁻ (x : γ) in s, ENNReal.ofReal (κ.rnDerivAux (κ + η) a x)(κ + η) a = (κ a) s

    Alias of ProbabilityTheory.Kernel.setLIntegral_rnDerivAux.

    theorem ProbabilityTheory.Kernel.withDensity_rnDerivAux {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
    ((κ + η).withDensity fun (a : α) (x : γ) => (κ.rnDerivAux (κ + η) a x).toNNReal) = κ
    theorem ProbabilityTheory.Kernel.withDensity_one_sub_rnDerivAux {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
    ((κ + η).withDensity fun (a : α) (x : γ) => (1 - κ.rnDerivAux (κ + η) a x).toNNReal) = η

    A set of points in α × γ related to the absolute continuity / mutual singularity of κ and η.

    Equations
    • κ.mutuallySingularSet η = {p : α × γ | 1 κ.rnDerivAux (κ + η) p.1 p.2}
    Instances For

      A set of points in α × γ related to the absolute continuity / mutual singularity of κ and η. That is,

      • withDensity η (rnDeriv κ η) a (mutuallySingularSetSlice κ η a) = 0,
      • singularPart κ η a (mutuallySingularSetSlice κ η a)ᶜ = 0.
      Equations
      • κ.mutuallySingularSetSlice η a = {x : γ | 1 κ.rnDerivAux (κ + η) a x}
      Instances For
        theorem ProbabilityTheory.Kernel.mem_mutuallySingularSetSlice {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) (a : α) (x : γ) :
        x κ.mutuallySingularSetSlice η a 1 κ.rnDerivAux (κ + η) a x
        theorem ProbabilityTheory.Kernel.not_mem_mutuallySingularSetSlice {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) (a : α) (x : γ) :
        xκ.mutuallySingularSetSlice η a κ.rnDerivAux (κ + η) a x < 1
        theorem ProbabilityTheory.Kernel.measurableSet_mutuallySingularSetSlice {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) (a : α) :
        MeasurableSet (κ.mutuallySingularSetSlice η a)
        theorem ProbabilityTheory.Kernel.measure_mutuallySingularSetSlice {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (a : α) :
        (η a) (κ.mutuallySingularSetSlice η a) = 0
        @[irreducible]
        noncomputable def ProbabilityTheory.Kernel.rnDeriv {α : Type u_3} {γ : Type u_4} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) (a : α) (x : γ) :

        Radon-Nikodym derivative of the kernel κ with respect to the kernel η.

        Equations
        Instances For
          theorem ProbabilityTheory.Kernel.rnDeriv_def {α : Type u_3} {γ : Type u_4} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) (a : α) (x : γ) :
          κ.rnDeriv η a x = ENNReal.ofReal (κ.rnDerivAux (κ + η) a x) / ENNReal.ofReal (1 - κ.rnDerivAux (κ + η) a x)
          theorem ProbabilityTheory.Kernel.rnDeriv_def' {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) :
          κ.rnDeriv η = fun (a : α) (x : γ) => ENNReal.ofReal (κ.rnDerivAux (κ + η) a x) / ENNReal.ofReal (1 - κ.rnDerivAux (κ + η) a x)
          theorem ProbabilityTheory.Kernel.measurable_rnDeriv {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) :
          Measurable fun (p : α × γ) => κ.rnDeriv η p.1 p.2
          theorem ProbabilityTheory.Kernel.measurable_rnDeriv_right {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) (a : α) :
          Measurable fun (x : γ) => κ.rnDeriv η a x
          theorem ProbabilityTheory.Kernel.rnDeriv_eq_top_iff {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) (a : α) (x : γ) :
          κ.rnDeriv η a x = (a, x) κ.mutuallySingularSet η
          theorem ProbabilityTheory.Kernel.rnDeriv_eq_top_iff' {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) (a : α) (x : γ) :
          κ.rnDeriv η a x = x κ.mutuallySingularSetSlice η a
          @[irreducible]

          Singular part of the kernel κ with respect to the kernel η.

          Equations
          Instances For
            theorem ProbabilityTheory.Kernel.singularPart_def {α : Type u_3} {γ : Type u_4} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsSFiniteKernel κ] [ProbabilityTheory.IsSFiniteKernel η] :
            κ.singularPart η = (κ + η).withDensity fun (a : α) (x : γ) => (κ.rnDerivAux (κ + η) a x).toNNReal - (1 - κ.rnDerivAux (κ + η) a x).toNNReal * κ.rnDeriv η a x
            theorem ProbabilityTheory.Kernel.measurable_singularPart_fun {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) :
            Measurable fun (p : α × γ) => (κ.rnDerivAux (κ + η) p.1 p.2).toNNReal - (1 - κ.rnDerivAux (κ + η) p.1 p.2).toNNReal * κ.rnDeriv η p.1 p.2
            theorem ProbabilityTheory.Kernel.measurable_singularPart_fun_right {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) (a : α) :
            Measurable fun (x : γ) => (κ.rnDerivAux (κ + η) a x).toNNReal - (1 - κ.rnDerivAux (κ + η) a x).toNNReal * κ.rnDeriv η a x
            theorem ProbabilityTheory.Kernel.singularPart_compl_mutuallySingularSetSlice {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsSFiniteKernel κ] [ProbabilityTheory.IsSFiniteKernel η] (a : α) :
            ((κ.singularPart η) a) (κ.mutuallySingularSetSlice η a) = 0
            theorem ProbabilityTheory.Kernel.singularPart_of_subset_compl_mutuallySingularSetSlice {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {κ η : ProbabilityTheory.Kernel α γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {a : α} {s : Set γ} (hs : s (κ.mutuallySingularSetSlice η a)) :
            ((κ.singularPart η) a) s = 0
            theorem ProbabilityTheory.Kernel.singularPart_of_subset_mutuallySingularSetSlice {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {κ η : ProbabilityTheory.Kernel α γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {a : α} {s : Set γ} (hsm : MeasurableSet s) (hs : s κ.mutuallySingularSetSlice η a) :
            ((κ.singularPart η) a) s = (κ a) s
            theorem ProbabilityTheory.Kernel.withDensity_rnDeriv_mutuallySingularSetSlice {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (a : α) :
            ((η.withDensity (κ.rnDeriv η)) a) (κ.mutuallySingularSetSlice η a) = 0
            theorem ProbabilityTheory.Kernel.withDensity_rnDeriv_of_subset_mutuallySingularSetSlice {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {κ η : ProbabilityTheory.Kernel α γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {a : α} {s : Set γ} (hs : s κ.mutuallySingularSetSlice η a) :
            ((η.withDensity (κ.rnDeriv η)) a) s = 0
            theorem ProbabilityTheory.Kernel.withDensity_rnDeriv_of_subset_compl_mutuallySingularSetSlice {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {κ η : ProbabilityTheory.Kernel α γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {a : α} {s : Set γ} (hsm : MeasurableSet s) (hs : s (κ.mutuallySingularSetSlice η a)) :
            ((η.withDensity (κ.rnDeriv η)) a) s = (κ a) s
            theorem ProbabilityTheory.Kernel.mutuallySingular_singularPart {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (a : α) :
            ((κ.singularPart η) a).MutuallySingular (η a)

            The singular part of κ with respect to η is mutually singular with η.

            theorem ProbabilityTheory.Kernel.rnDeriv_add_singularPart {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] :
            η.withDensity (κ.rnDeriv η) + κ.singularPart η = κ

            Lebesgue decomposition of a finite kernel κ with respect to another one η. κ is the sum of an absolutely continuous part withDensity η (rnDeriv κ η) and a singular part singularPart κ η.

            theorem ProbabilityTheory.Kernel.singularPart_eq_zero_iff_apply_eq_zero {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (a : α) :
            (κ.singularPart η) a = 0 ((κ.singularPart η) a) (κ.mutuallySingularSetSlice η a) = 0
            theorem ProbabilityTheory.Kernel.withDensity_rnDeriv_eq_zero_iff_apply_eq_zero {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (a : α) :
            (η.withDensity (κ.rnDeriv η)) a = 0 ((η.withDensity (κ.rnDeriv η)) a) (κ.mutuallySingularSetSlice η a) = 0
            theorem ProbabilityTheory.Kernel.singularPart_eq_zero_iff_absolutelyContinuous {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (a : α) :
            (κ.singularPart η) a = 0 (κ a).AbsolutelyContinuous (η a)
            theorem ProbabilityTheory.Kernel.withDensity_rnDeriv_eq_zero_iff_mutuallySingular {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (a : α) :
            (η.withDensity (κ.rnDeriv η)) a = 0 (κ a).MutuallySingular (η a)
            theorem ProbabilityTheory.Kernel.singularPart_eq_zero_iff_measure_eq_zero {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (a : α) :
            (κ.singularPart η) a = 0 (κ a) (κ.mutuallySingularSetSlice η a) = 0
            theorem ProbabilityTheory.Kernel.withDensity_rnDeriv_eq_zero_iff_measure_eq_zero {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (a : α) :
            (η.withDensity (κ.rnDeriv η)) a = 0 (κ a) (κ.mutuallySingularSetSlice η a) = 0

            The set of points a : α such that κ a ≪ η a is measurable.

            The set of points a : α such that κ a ⟂ₘ η a is measurable.

            theorem ProbabilityTheory.Kernel.eq_rnDeriv_measure {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {κ η ξ : ProbabilityTheory.Kernel α γ} {f : αγENNReal} [ProbabilityTheory.IsFiniteKernel η] (h : κ = η.withDensity f + ξ) (hf : Measurable (Function.uncurry f)) (a : α) (hξ : (ξ a).MutuallySingular (η a)) :
            f a =ᵐ[η a] (κ a).rnDeriv (η a)
            theorem ProbabilityTheory.Kernel.eq_singularPart_measure {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {κ η ξ : ProbabilityTheory.Kernel α γ} {f : αγENNReal} [ProbabilityTheory.IsFiniteKernel η] (h : κ = η.withDensity f + ξ) (hf : Measurable (Function.uncurry f)) (a : α) (hξ : (ξ a).MutuallySingular (η a)) :
            ξ a = (κ a).singularPart (η a)
            theorem ProbabilityTheory.Kernel.singularPart_eq_singularPart_measure {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {κ η : ProbabilityTheory.Kernel α γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] [ProbabilityTheory.IsFiniteKernel η] [ProbabilityTheory.IsFiniteKernel κ] {a : α} :
            (κ.singularPart η) a = (κ a).singularPart (η a)
            theorem ProbabilityTheory.Kernel.eq_rnDeriv {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {κ η : ProbabilityTheory.Kernel α γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] {ξ : ProbabilityTheory.Kernel α γ} {f : αγENNReal} [ProbabilityTheory.IsFiniteKernel η] [ProbabilityTheory.IsFiniteKernel κ] (h : κ = η.withDensity f + ξ) (hf : Measurable (Function.uncurry f)) (a : α) (hξ : (ξ a).MutuallySingular (η a)) :
            f a =ᵐ[η a] κ.rnDeriv η a
            theorem ProbabilityTheory.Kernel.eq_singularPart {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {κ η : ProbabilityTheory.Kernel α γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] {ξ : ProbabilityTheory.Kernel α γ} {f : αγENNReal} [ProbabilityTheory.IsFiniteKernel η] [ProbabilityTheory.IsFiniteKernel κ] (h : κ = η.withDensity f + ξ) (hf : Measurable (Function.uncurry f)) (a : α) (hξ : (ξ a).MutuallySingular (η a)) :
            ξ a = (κ.singularPart η) a

            For two kernels κ, η, the singular part of κ a with respect to η a is a measurable function of a.

            theorem ProbabilityTheory.Kernel.rnDeriv_self {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] (a : α) :
            κ.rnDeriv κ a =ᵐ[κ a] 1
            theorem ProbabilityTheory.Kernel.rnDeriv_singularPart {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ ν : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel ν] (a : α) :
            (κ.singularPart ν).rnDeriv ν a =ᵐ[ν a] 0
            theorem ProbabilityTheory.Kernel.rnDeriv_lt_top {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {a : α} :
            ∀ᵐ (x : γ) ∂η a, κ.rnDeriv η a x <
            theorem ProbabilityTheory.Kernel.rnDeriv_ne_top {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {a : α} :
            ∀ᵐ (x : γ) ∂η a, κ.rnDeriv η a x
            theorem ProbabilityTheory.Kernel.rnDeriv_pos {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {κ η : ProbabilityTheory.Kernel α γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {a : α} (ha : (κ a).AbsolutelyContinuous (η a)) :
            ∀ᵐ (x : γ) ∂κ a, 0 < κ.rnDeriv η a x
            theorem ProbabilityTheory.Kernel.rnDeriv_toReal_pos {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {κ η : ProbabilityTheory.Kernel α γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {a : α} (h : (κ a).AbsolutelyContinuous (η a)) :
            ∀ᵐ (x : γ) ∂κ a, 0 < (κ.rnDeriv η a x).toReal
            theorem ProbabilityTheory.Kernel.rnDeriv_add {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ ν η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel ν] [ProbabilityTheory.IsFiniteKernel η] (a : α) :
            (κ + ν).rnDeriv η a =ᵐ[η a] κ.rnDeriv η a + ν.rnDeriv η a
            theorem ProbabilityTheory.Kernel.withDensity_rnDeriv_le {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] (κ η : ProbabilityTheory.Kernel α γ) [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] (a : α) :
            (η.withDensity (κ.rnDeriv η)) a κ a
            theorem ProbabilityTheory.Kernel.withDensity_rnDeriv_eq {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {κ η : ProbabilityTheory.Kernel α γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {a : α} (h : (κ a).AbsolutelyContinuous (η a)) :
            (η.withDensity (κ.rnDeriv η)) a = κ a
            theorem ProbabilityTheory.Kernel.rnDeriv_withDensity {α : Type u_1} {γ : Type u_2} {mα : MeasurableSpace α} {mγ : MeasurableSpace γ} {κ : ProbabilityTheory.Kernel α γ} [hαγ : MeasurableSpace.CountableOrCountablyGenerated α γ] [ProbabilityTheory.IsFiniteKernel κ] {f : αγENNReal} [ProbabilityTheory.IsFiniteKernel (κ.withDensity f)] (hf : Measurable (Function.uncurry f)) (a : α) :
            (κ.withDensity f).rnDeriv κ a =ᵐ[κ a] f a