Documentation

Mathlib.RingTheory.Bialgebra.Equiv

Isomorphisms of R-bialgebras #

This file defines bundled isomorphisms of R-bialgebras. We simply mimic the early parts of Mathlib/Algebra/Algebra/Equiv.lean.

Main definitions #

Notations #

structure BialgEquiv (R : Type u) [CommSemiring R] (A : Type v) (B : Type w) [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] extends A ≃ₗc[R] B, A ≃* B :
Type (max v w)

An equivalence of bialgebras is an invertible bialgebra homomorphism.

An equivalence of bialgebras is an invertible bialgebra homomorphism.

Equations
  • One or more equations did not get rendered due to their size.
class BialgEquivClass (F : Type u_1) (R : outParam (Type u_2)) (A : outParam (Type u_3)) (B : outParam (Type u_4)) [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] extends CoalgEquivClass F R A B, MulEquivClass F A B :

BialgEquivClass F R A B asserts F is a type of bundled bialgebra equivalences from A to B.

Instances
    @[instance 100]
    instance BialgEquivClass.toBialgHomClass {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] [BialgEquivClass F R A B] :
    Equations
    • =
    def BialgEquivClass.toBialgEquiv {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] [BialgEquivClass F R A B] (f : F) :

    Reinterpret an element of a type of bialgebra equivalences as a bialgebra equivalence.

    Equations
    • f = { toCoalgEquiv := f, map_mul' := }
    instance BialgEquivClass.instCoeToBialgEquiv {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] [BialgEquivClass F R A B] :

    Reinterpret an element of a type of bialgebra equivalences as a bialgebra equivalence.

    Equations
    • BialgEquivClass.instCoeToBialgEquiv = { coe := fun (f : F) => f }
    @[instance 100]
    instance BialgEquivClass.toAlgEquivClass {F : Type u_1} {R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [EquivLike F A B] [BialgEquivClass F R A B] :
    Equations
    • =
    def BialgEquiv.toBialgHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₐc[R] B) :

    The bialgebra morphism underlying a bialgebra equivalence.

    Equations
    • f.toBialgHom = { toCoalgHom := f.toCoalgHom, map_one' := , map_mul' := }
    def BialgEquiv.toAlgEquiv {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₐc[R] B) :

    The algebra equivalence underlying a bialgebra equivalence.

    Equations
    • f.toAlgEquiv = { toFun := f.toFun, invFun := f.invFun, left_inv := , right_inv := , map_mul' := , map_add' := , commutes' := }
    def BialgEquiv.toEquiv {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
    (A ≃ₐc[R] B)A B

    The equivalence of types underlying a bialgebra equivalence.

    Equations
    • f.toEquiv = f.toEquiv
    theorem BialgEquiv.toEquiv_injective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
    Function.Injective BialgEquiv.toEquiv
    @[simp]
    theorem BialgEquiv.toEquiv_inj {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e₁ e₂ : A ≃ₐc[R] B} :
    e₁.toEquiv = e₂.toEquiv e₁ = e₂
    theorem BialgEquiv.toBialgHom_injective {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
    Function.Injective BialgEquiv.toBialgHom
    instance BialgEquiv.instEquivLike {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
    EquivLike (A ≃ₐc[R] B) A B
    Equations
    • BialgEquiv.instEquivLike = { coe := fun (f : A ≃ₐc[R] B) => f.toFun, inv := fun (f : A ≃ₐc[R] B) => f.invFun, left_inv := , right_inv := , coe_injective' := }
    instance BialgEquiv.instFunLike {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
    FunLike (A ≃ₐc[R] B) A B
    Equations
    • BialgEquiv.instFunLike = { coe := DFunLike.coe, coe_injective' := }
    instance BialgEquiv.instBialgEquivClass {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
    Equations
    • =
    @[simp]
    theorem BialgEquiv.toBialgHom_inj {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e₁ e₂ : A ≃ₐc[R] B} :
    e₁ = e₂ e₁ = e₂
    @[simp]
    theorem BialgEquiv.coe_mk {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : AB} {h : ∀ (x y : A), f (x + y) = f x + f y} {h₀ : ∀ (m : R) (x : A), { toFun := f, map_add' := h }.toFun (m x) = (RingHom.id R) m { toFun := f, map_add' := h }.toFun x} {h₁ : Coalgebra.counit ∘ₗ { toFun := f, map_add' := h, map_smul' := h₀ } = Coalgebra.counit} {h₂ : TensorProduct.map { toFun := f, map_add' := h, map_smul' := h₀ } { toFun := f, map_add' := h, map_smul' := h₀ } ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ { toFun := f, map_add' := h, map_smul' := h₀ }} {h₃ : BA} {h₄ : Function.LeftInverse h₃ { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂ }.toFun} {h₅ : Function.RightInverse h₃ { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂ }.toFun} {h₆ : ∀ (x y : A), { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂, invFun := h₃, left_inv := h₄, right_inv := h₅ }.toFun (x * y) = { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂, invFun := h₃, left_inv := h₄, right_inv := h₅ }.toFun x * { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂, invFun := h₃, left_inv := h₄, right_inv := h₅ }.toFun y} :
    { toFun := f, map_add' := h, map_smul' := h₀, counit_comp := h₁, map_comp_comul := h₂, invFun := h₃, left_inv := h₄, right_inv := h₅, map_mul' := h₆ } = f
    def BialgEquiv.Simps.apply {R : Type u} [CommSemiring R] {α : Type v} {β : Type w} [Semiring α] [Semiring β] [Algebra R α] [Algebra R β] [CoalgebraStruct R α] [CoalgebraStruct R β] (f : α ≃ₐc[R] β) :
    αβ

    See Note [custom simps projection]

    Equations
    @[simp]
    theorem BialgEquiv.coe_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
    e = e
    @[simp]
    theorem BialgEquiv.toCoalgEquiv_eq_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₐc[R] B) :
    f.toCoalgEquiv = f
    @[simp]
    theorem BialgEquiv.toBialgHom_eq_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₐc[R] B) :
    f.toBialgHom = f
    @[simp]
    theorem BialgEquiv.toAlgEquiv_eq_coe {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ≃ₐc[R] B) :
    f.toAlgEquiv = f
    @[simp]
    theorem BialgEquiv.coe_toCoalgEquiv {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
    e = e
    @[simp]
    theorem BialgEquiv.coe_toBialgHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
    e = e
    @[simp]
    theorem BialgEquiv.coe_toAlgEquiv {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
    e = e
    theorem BialgEquiv.toCoalgEquiv_toCoalgHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
    e = e
    theorem BialgEquiv.toBialgHom_toAlgHom {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
    e = e
    theorem BialgEquiv.ext {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e e' : A ≃ₐc[R] B} (h : ∀ (x : A), e x = e' x) :
    e = e'
    theorem BialgEquiv.congr_arg {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e : A ≃ₐc[R] B} {x x' : A} :
    x = x'e x = e x'
    theorem BialgEquiv.congr_fun {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {e e' : A ≃ₐc[R] B} (h : e = e') (x : A) :
    e x = e' x
    def BialgEquiv.refl (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] [CoalgebraStruct R A] :

    The identity map is a bialgebra equivalence.

    Equations
    @[simp]
    theorem BialgEquiv.refl_apply (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] [CoalgebraStruct R A] (a : A) :
    (BialgEquiv.refl R A) a = a
    @[simp]
    theorem BialgEquiv.refl_invFun (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] [CoalgebraStruct R A] (a✝ : A) :
    (BialgEquiv.refl R A).invFun a✝ = a✝
    @[simp]
    def BialgEquiv.symm {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :

    Bialgebra equivalences are symmetric.

    Equations
    • e.symm = { toCoalgEquiv := (↑e).symm, map_mul' := }
    @[simp]
    theorem BialgEquiv.symm_toCoalgEquiv {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
    e.symm = (↑e).symm
    def BialgEquiv.Simps.symm_apply {R : Type u_1} [CommSemiring R] {A : Type u_2} {B : Type u_3} [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
    BA

    See Note [custom simps projection]

    Equations
    theorem BialgEquiv.invFun_eq_symm {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
    e.invFun = e.symm
    @[simp]
    theorem BialgEquiv.coe_toEquiv_symm {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (e : A ≃ₐc[R] B) :
    e.toEquiv.symm = e.symm
    def BialgEquiv.trans {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (e₁₂ : A ≃ₐc[R] B) (e₂₃ : B ≃ₐc[R] C) :

    Bialgebra equivalences are transitive.

    Equations
    • e₁₂.trans e₂₃ = { toCoalgEquiv := (↑e₁₂).trans e₂₃, map_mul' := }
    @[simp]
    theorem BialgEquiv.trans_apply {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (e₁₂ : A ≃ₐc[R] B) (e₂₃ : B ≃ₐc[R] C) (a✝ : A) :
    (e₁₂.trans e₂₃) a✝ = e₂₃ (e₁₂ a✝)
    @[simp]
    theorem BialgEquiv.trans_invFun {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (e₁₂ : A ≃ₐc[R] B) (e₂₃ : B ≃ₐc[R] C) (a✝ : C) :
    (e₁₂.trans e₂₃).invFun a✝ = (↑e₁₂).symm ((↑e₂₃).symm a✝)
    @[simp]
    theorem BialgEquiv.trans_toCoalgEquiv {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] {e₁₂ : A ≃ₐc[R] B} {e₂₃ : B ≃ₐc[R] C} :
    (e₁₂.trans e₂₃) = (↑e₁₂).trans e₂₃
    @[simp]
    theorem BialgEquiv.trans_toBialgHom {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] {e₁₂ : A ≃ₐc[R] B} {e₂₃ : B ≃ₐc[R] C} :
    (e₁₂.trans e₂₃) = (↑e₂₃).comp e₁₂
    @[simp]
    theorem BialgEquiv.coe_toEquiv_trans {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] {e₁₂ : A ≃ₐc[R] B} {e₂₃ : B ≃ₐc[R] C} :
    (↑e₁₂).trans e₂₃ = (e₁₂.trans e₂₃)