Primary submodules #
A proper submodule S : Submodule R M
is primary iff
r • x ∈ S
implies x ∈ S
or ∃ n : ℕ, r ^ n • (⊤ : Submodule R M) ≤ S
.
Main results #
Submodule.isPrimary_iff_zero_divisor_quotient_imp_nilpotent_smul
: AN : Submodule R M
is primary if any zero divisor onM ⧸ N
is nilpotent. See https://mathoverflow.net/questions/3910/primary-decomposition-for-modules for a comparison of this definition (a la Atiyah-Macdonald) vs "locally nilpotent" (Matsumura).
Implementation details #
This is a generalization of Ideal.IsPrimary
. For brevity, the pointwise instances are used
to define the nilpotency of r : R
.
References #
- [M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra][atiyah-macdonald] Chapter 4, Exercise 21.
def
Submodule.IsPrimary
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
(S : Submodule R M)
:
A proper submodule S : Submodule R M
is primary iff
r • x ∈ S
implies x ∈ S
or ∃ n : ℕ, r ^ n • (⊤ : Submodule R M) ≤ S
.
This generalizes Ideal.IsPrimary
.
Instances For
theorem
Submodule.IsPrimary.ne_top
{R : Type u_1}
{M : Type u_2}
[CommSemiring R]
[AddCommMonoid M]
[Module R M]
{S : Submodule R M}
(h : S.IsPrimary)
: