Documentation

Mathlib.RingTheory.LocalRing.MaximalIdeal.Basic

Maximal ideal of local rings #

We prove basic properties of the maximal ideal of a local ring.

Equations
  • =
theorem IsLocalRing.maximal_ideal_unique (R : Type u_1) [CommSemiring R] [IsLocalRing R] :
∃! I : Ideal R, I.IsMaximal
theorem IsLocalRing.eq_maximalIdeal {R : Type u_1} [CommSemiring R] [IsLocalRing R] {I : Ideal R} (hI : I.IsMaximal) :

An element x of a commutative local semiring is not contained in the maximal ideal iff it is a unit.

@[deprecated IsLocalRing.maximal_ideal_unique]
theorem LocalRing.maximal_ideal_unique (R : Type u_1) [CommSemiring R] [IsLocalRing R] :
∃! I : Ideal R, I.IsMaximal

Alias of IsLocalRing.maximal_ideal_unique.

@[deprecated IsLocalRing.eq_maximalIdeal]
theorem LocalRing.eq_maximalIdeal {R : Type u_1} [CommSemiring R] [IsLocalRing R] {I : Ideal R} (hI : I.IsMaximal) :

Alias of IsLocalRing.eq_maximalIdeal.

@[deprecated IsLocalRing.le_maximalIdeal]

Alias of IsLocalRing.le_maximalIdeal.

@[deprecated IsLocalRing.mem_maximalIdeal]

Alias of IsLocalRing.mem_maximalIdeal.

@[deprecated IsLocalRing.not_mem_maximalIdeal]

Alias of IsLocalRing.not_mem_maximalIdeal.


An element x of a commutative local semiring is not contained in the maximal ideal iff it is a unit.

@[deprecated IsLocalRing.isField_iff_maximalIdeal_eq]

Alias of IsLocalRing.isField_iff_maximalIdeal_eq.

@[deprecated IsLocalRing.maximalIdeal_le_jacobson]

Alias of IsLocalRing.maximalIdeal_le_jacobson.

@[deprecated IsLocalRing.jacobson_eq_maximalIdeal]
theorem LocalRing.jacobson_eq_maximalIdeal {R : Type u_1} [CommRing R] [IsLocalRing R] (I : Ideal R) (h : I ) :

Alias of IsLocalRing.jacobson_eq_maximalIdeal.

@[deprecated IsLocalRing.ker_eq_maximalIdeal]
theorem LocalRing.ker_eq_maximalIdeal {R : Type u_1} {K : Type u_3} [CommRing R] [IsLocalRing R] [Field K] (φ : R →+* K) (hφ : Function.Surjective φ) :

Alias of IsLocalRing.ker_eq_maximalIdeal.

@[deprecated IsLocalRing.maximalIdeal_eq_bot]

Alias of IsLocalRing.maximalIdeal_eq_bot.

@[deprecated IsLocalRing.of_nilradical_isMaximal]
theorem LocalRing.of_nilradical_isMaximal {R : Type u_4} [CommSemiring R] [h : (nilradical R).IsMaximal] :

Alias of IsLocalRing.of_nilradical_isMaximal.

noncomputable def localizationEquivSelfOfNilradicalIsMaximal {R : Type u_4} [CommSemiring R] {S : Type u_5} [CommSemiring S] [Algebra R S] {M : Submonoid R} [h : (nilradical R).IsMaximal] (h' : 0M) [IsLocalization M S] :

Let S be the localization of a commutative semiring R at a submonoid M that does not contain 0. If the nilradical of R is maximal then there is a R-algebra isomorphism between R and S.

Equations
Instances For