Maximal ideal of local rings #
We prove basic properties of the maximal ideal of a local ring.
Equations
- ⋯ = ⋯
An element x
of a commutative local semiring is not contained in the maximal ideal
iff it is a unit.
Alias of IsLocalRing.maximal_ideal_unique
.
Alias of IsLocalRing.eq_maximalIdeal
.
Alias of IsLocalRing.le_maximalIdeal
.
Alias of IsLocalRing.mem_maximalIdeal
.
Alias of IsLocalRing.not_mem_maximalIdeal
.
An element x
of a commutative local semiring is not contained in the maximal ideal
iff it is a unit.
Alias of IsLocalRing.isField_iff_maximalIdeal_eq
.
Alias of IsLocalRing.maximalIdeal_le_jacobson
.
Alias of IsLocalRing.jacobson_eq_maximalIdeal
.
Alias of IsLocalRing.ker_eq_maximalIdeal
.
Alias of IsLocalRing.maximalIdeal_eq_bot
.
Alias of IsLocalRing.of_nilradical_isMaximal
.
Let S
be the localization of a commutative semiring R
at a submonoid M
that does not
contain 0. If the nilradical of R
is maximal then there is a R
-algebra isomorphism between
R
and S
.