Documentation

Mathlib.RingTheory.LocalRing.Subring

Local subrings of fields #

Main result #

instance instIsLocalRingSubtypeMemSubringMapOfNontrivial {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Nontrivial S] (f : R →+* S) (s : Subring R) [IsLocalRing s] :
Equations
  • =
instance isLocalRing_top {R : Type u_1} [CommRing R] [IsLocalRing R] :
Equations
  • =
structure LocalSubring (R : Type u_1) [CommRing R] :
Type u_1

The class of local subrings of a commutative ring.

  • toSubring : Subring R

    The underlying subring of a local subring.

  • isLocalRing : IsLocalRing self.toSubring
theorem LocalSubring.ext {R : Type u_1} {inst✝ : CommRing R} {x y : LocalSubring R} (toSubring : x.toSubring = y.toSubring) :
x = y
theorem LocalSubring.toSubring_injective {R : Type u_1} [CommRing R] :
Function.Injective LocalSubring.toSubring
def LocalSubring.copy {R : Type u_1} [CommRing R] (S : LocalSubring R) (s : Set R) (hs : s = S.toSubring) :

Copy of a local subring with a new carrier equal to the old one. Useful to fix definitional equalities.

Equations
def LocalSubring.map {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Nontrivial S] (f : R →+* S) (s : LocalSubring R) :

The image of a LocalSubring as a LocalSubring.

Equations
@[simp]
theorem LocalSubring.map_toSubring {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Nontrivial S] (f : R →+* S) (s : LocalSubring R) :
(LocalSubring.map f s).toSubring = Subring.map f s.toSubring
def LocalSubring.range {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsLocalRing R] [Nontrivial S] (f : R →+* S) :

The range of a ringhom from a local ring as a LocalSubring.

Equations
@[simp]
theorem LocalSubring.range_toSubring {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsLocalRing R] [Nontrivial S] (f : R →+* S) :
(LocalSubring.range f).toSubring = (Subring.map f ).copy (Set.range f)

The domination order on local subrings. A dominates B if and only if B ≤ A (as subrings) and m_A ∩ B = m_B.

Stacks Tag 00I9

Equations
theorem LocalSubring.le_def {R : Type u_1} [CommRing R] {A B : LocalSubring R} :
A B ∃ (h : A.toSubring B.toSubring), IsLocalHom (Subring.inclusion h)

A dominates B if and only if B ≤ A (as subrings) and m_A ∩ B = m_B.

theorem LocalSubring.toSubring_mono {R : Type u_1} [CommRing R] :
Monotone LocalSubring.toSubring
noncomputable def LocalSubring.ofPrime {K : Type u_3} [Field K] (A : Subring K) (P : Ideal A) [P.IsPrime] :

The localization of a subring at a prime, as a local subring. Also see Localization.subalgebra.ofField

Equations
theorem LocalSubring.le_ofPrime {K : Type u_3} [Field K] (A : Subring K) (P : Ideal A) [P.IsPrime] :
A (LocalSubring.ofPrime A P).toSubring
noncomputable instance LocalSubring.instAlgebraSubtypeMemSubringToSubringOfPrime {K : Type u_3} [Field K] (A : Subring K) (P : Ideal A) [P.IsPrime] :
Algebra A (LocalSubring.ofPrime A P).toSubring
Equations
instance LocalSubring.instIsScalarTowerSubtypeMemSubringToSubringOfPrime {K : Type u_3} [Field K] (A : Subring K) (P : Ideal A) [P.IsPrime] :
IsScalarTower (↥A) (↥(LocalSubring.ofPrime A P).toSubring) K
Equations
  • =
noncomputable def LocalSubring.ofPrimeEquiv {K : Type u_3} [Field K] (A : Subring K) (P : Ideal A) [P.IsPrime] :

The localization of a subring at a prime is indeed isomorphic to its abstract localization.

Equations
instance LocalSubring.instAtPrimeSubtypeMemSubringToSubringOfPrime {K : Type u_3} [Field K] (A : Subring K) (P : Ideal A) [P.IsPrime] :
Equations
  • =