Rank in a well-founded relation #
For r
a well-founded relation, IsWellFounded.rank r a
is recursively defined as the least
ordinal greater than the ranks of all elements below a
.
Rank of an accessible value #
The rank of an element a
accessible under a relation r
is defined recursively as the
smallest ordinal greater than the ranks of all elements below it (i.e. elements b
such that
r b a
).
Equations
- h.rank = Acc.recOn h fun (a : α) (_h : ∀ (y : α), r y a → Acc r y) (ih : (y : α) → r y a → Ordinal.{?u.39}) => ⨆ (b : { b : α // r b a }), Order.succ (ih ↑b ⋯)
Instances For
theorem
Acc.rank_eq
{α : Type u}
{a : α}
{r : α → α → Prop}
(h : Acc r a)
:
h.rank = ⨆ (b : { b : α // r b a }), Order.succ ⋯.rank
theorem
Acc.mem_range_rank_of_le
{α : Type u}
{a : α}
{r : α → α → Prop}
{o : Ordinal.{u}}
(ha : Acc r a)
(ho : o ≤ ha.rank)
:
Rank in a well-founded relation #
noncomputable def
IsWellFounded.rank
{α : Type u}
(r : α → α → Prop)
[hwf : IsWellFounded α r]
(a : α)
:
The rank of an element a
under a well-founded relation r
is defined recursively as the
smallest ordinal greater than the ranks of all elements below it (i.e. elements b
such that
r b a
).
Equations
- IsWellFounded.rank r a = ⋯.rank
Instances For
theorem
IsWellFounded.rank_eq
{α : Type u}
(r : α → α → Prop)
[hwf : IsWellFounded α r]
(a : α)
:
IsWellFounded.rank r a = ⨆ (b : { b : α // r b a }), Order.succ (IsWellFounded.rank r ↑b)
theorem
IsWellFounded.rank_lt_of_rel
{α : Type u}
{a b : α}
{r : α → α → Prop}
[hwf : IsWellFounded α r]
(h : r a b)
:
IsWellFounded.rank r a < IsWellFounded.rank r b
theorem
IsWellFounded.mem_range_rank_of_le
{α : Type u}
{a : α}
{r : α → α → Prop}
[hwf : IsWellFounded α r]
{o : Ordinal.{u}}
(h : o ≤ IsWellFounded.rank r a)
:
o ∈ Set.range (IsWellFounded.rank r)
theorem
WellFoundedLT.rank_strictMono
{α : Type u}
[Preorder α]
[WellFoundedLT α]
:
StrictMono (IsWellFounded.rank fun (x1 x2 : α) => x1 < x2)
theorem
WellFoundedGT.rank_strictAnti
{α : Type u}
[Preorder α]
[WellFoundedGT α]
:
StrictAnti (IsWellFounded.rank fun (x1 x2 : α) => x1 > x2)
@[simp]
theorem
IsWellFounded.rank_eq_typein
{α : Type u}
(r : α → α → Prop)
[IsWellOrder α r]
:
IsWellFounded.rank r = ⇑(Ordinal.typein r).toRelEmbedding
@[deprecated IsWellFounded.rank]
The rank of an element a
under a well-founded relation r
is defined inductively as the
smallest ordinal greater than the ranks of all elements below it (i.e. elements b
such that
r b a
).
Equations
- hwf.rank a = ⋯.rank
Instances For
@[deprecated IsWellFounded.rank_eq]
theorem
WellFounded.rank_eq
{α : Type u}
{a : α}
{r : α → α → Prop}
(hwf : WellFounded r)
:
hwf.rank a = ⨆ (b : { b : α // r b a }), Order.succ (hwf.rank ↑b)
@[deprecated IsWellFounded.rank_lt_of_rel]
theorem
WellFounded.rank_lt_of_rel
{α : Type u}
{a b : α}
{r : α → α → Prop}
(hwf : WellFounded r)
(h : r a b)
:
hwf.rank a < hwf.rank b
@[deprecated WellFoundedLT.rank_strictMono]
@[deprecated WellFoundedGT.rank_strictAnti]