Documentation

Mathlib.Topology.Category.LightProfinite.AsLimit

Light profinite sets as limits of finite sets. #

We show that any light profinite set is isomorphic to a sequential limit of finite sets.

The limit cone for S : LightProfinite is S.asLimitCone, the fact that it's a limit is S.asLimit.

We also prove that the projection and transition maps in this limit are surjective.

@[reducible, inline]

The functor ℕᵒᵖ ⥤ FintypeCat whose limit is isomorphic to S.

Equations
  • S.fintypeDiagram = S.toLightDiagram.diagram
@[reducible, inline]

An abbreviation for S.fintypeDiagramFintypeCat.toProfinite.

Equations

A cone over S.diagram whose cone point is isomorphic to S. (Auxiliary definition, use S.asLimitCone instead.)

Equations
def LightProfinite.isoMapCone (S : LightProfinite) :
lightToProfinite.mapCone S.asLimitConeAux S.toLightDiagram.cone

An auxiliary isomorphism of cones used to prove that S.asLimitConeAux is a limit cone.

Equations

S.asLimitConeAux is indeed a limit cone. (Auxiliary definition, use S.asLimit instead.)

Equations

A cone over S.diagram whose cone point is S.

Equations
  • One or more equations did not get rendered due to their size.

S.asLimitCone is indeed a limit cone.

Equations
  • One or more equations did not get rendered due to their size.

A bundled version of S.asLimitCone and S.asLimit.

Equations
  • S.lim = { cone := S.asLimitCone, isLimit := S.asLimit }
@[reducible, inline]
abbrev LightProfinite.proj (S : LightProfinite) (n : ) :
S S.diagram.obj (Opposite.op n)

The projection from S to the nth component of S.diagram.

Equations
@[reducible, inline]

An abbreviation for the nth component of S.diagram.

Equations
@[reducible, inline]
abbrev LightProfinite.transitionMap (S : LightProfinite) (n : ) :
S.component (n + 1) S.component n

The transition map from S_{n+1} to S_n in S.diagram.

Equations
@[reducible, inline]
abbrev LightProfinite.transitionMapLE (S : LightProfinite) {n m : } (h : n m) :
S.component m S.component n

The transition map from S_m to S_n in S.diagram, when m ≤ n.

Equations
theorem LightProfinite.proj_comp_transitionMap' (S : LightProfinite) (n : ) :
(S.transitionMap n) (S.proj (n + 1)) = (S.proj n)
theorem LightProfinite.proj_comp_transitionMapLE' (S : LightProfinite) {n m : } (h : n m) :
(S.transitionMapLE h) (S.proj m) = (S.proj n)
theorem LightProfinite.surjective_transitionMapLE (S : LightProfinite) {n m : } (h : n m) :
Function.Surjective (S.transitionMapLE h)