Probability makes counting (sometimes) easy #
Structure #
- Theorem 1
- proof
- Ramsey Numbers
- Theorem 2
- proof
- Triangle-free graphs with high chromatic number (TODO)
- Theorem 3
- proof
- Theorem 4 (TODO : Define crossing number)
theorem
chapter45.remark_2
{ฮฑ : Type u_1}
[DecidableEq ฮฑ]
{X : Finset ฮฑ}
{๐ ๐ข : Finset (Finset { x : ฮฑ // x โ X })}
(hโ : two_colorable ๐)
(hโ : ๐ข โ ๐)
:
two_colorable ๐ข
theorem
chapter45.MeasureTheory.measure_biUnion_lt_sum_of_inter
{ฮฑ : Type u_2}
[DecidableEq ฮฑ]
{ฮฒ : Type u_1}
[MeasurableSpace ฮฒ]
[MeasurableSingletonClass ฮฒ]
[DecidableEq ฮฒ]
{P : MeasureTheory.Measure ฮฒ}
[MeasureTheory.IsFiniteMeasure P]
(s : Finset ฮฑ)
(t : ฮฑ โ Finset ฮฒ)
(h : โ (i : { x : ฮฑ // x โ s }) (j : { x : ฮฑ // x โ s }), i โ j โง P (โ(t โi) โฉ โ(t โj)) โ 0)
:
Ramsey Numbers and Theorem 2
A complete graph G
on N
vertices has the Ramsey property R(m, n)
, if for each two-coloring of
the edges of G
, either there is a complete subgraph on m
vertices of the first color, or there
is a complete subgraph on n
vertices in the second color.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
chapter45.ramsey_exists
(m n : โ)
(h_m : m โฅ 2)
(h_n : n โฅ 2)
:
โ (N : โ), ramsey_property m n N