Translation operator #
This file defines the translation of a function from a group by an element of that group.
Notation #
τ a f
is notation for translate a f
.
See also #
Generally, translation is the same as acting on the domain by subtraction. This setting is
abstracted by DomAddAct
in such a way that τ a f = DomAddAct.mk (-a) +ᵥ f
(see
translate_eq_domAddActMk_vadd
). Using DomAddAct
is irritating in applications because of this
negation appearing inside DomAddAct.mk
. Although mathematically equivalent, the pen and paper
convention is that translating is an action by subtraction, not by addition.
Translation of a function in a group by an element of that group.
τ a f
is defined as x ↦ f (x - a)
.
Equations
- translate.termτ = Lean.ParserDescr.node `translate.termτ 1024 (Lean.ParserDescr.symbol "τ ")
Instances For
@[simp]
theorem
translate_apply
{α : Type u_2}
{G : Type u_5}
[AddCommGroup G]
(a : G)
(f : G → α)
(x : G)
:
@[simp]
See translate_add
theorem
translate_eq_domAddActMk_vadd
{α : Type u_2}
{G : Type u_5}
[AddCommGroup G]
(a : G)
(f : G → α)
:
@[simp]
theorem
translate_sum_right
{ι : Type u_1}
{M : Type u_4}
{G : Type u_5}
[AddCommGroup G]
[AddCommMonoid M]
(a : G)
(f : ι → G → M)
(s : Finset ι)
:
theorem
sum_translate
{M : Type u_4}
{G : Type u_5}
[AddCommGroup G]
[AddCommMonoid M]
[Fintype G]
(a : G)
(f : G → M)
:
@[simp]
theorem
support_translate
{G : Type u_5}
{H : Type u_6}
[AddCommGroup G]
[AddCommGroup H]
(a : G)
(f : G → H)
:
Function.support (translate a f) = a +ᵥ Function.support f
theorem
translate_prod_right
{ι : Type u_1}
{M : Type u_4}
{G : Type u_5}
[AddCommGroup G]
[CommMonoid M]
(a : G)
(f : ι → G → M)
(s : Finset ι)
: