Documentation

Mathlib.Algebra.Module.Submodule.Basic

Submodules of a module #

This file contains basic results on submodules that require further theory to be defined. As such it is a good target for organizing and splitting further.

Tags #

submodule, subspace, linear map

theorem Submodule.toAddSubmonoid_strictMono {R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] [Module R M] :
StrictMono Submodule.toAddSubmonoid
theorem Submodule.toAddSubmonoid_le {R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] [Module R M] {p q : Submodule R M} :
p.toAddSubmonoid q.toAddSubmonoid p q
theorem Submodule.toAddSubmonoid_mono {R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] [Module R M] :
Monotone Submodule.toAddSubmonoid
theorem Submodule.toSubMulAction_strictMono {R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] [Module R M] :
StrictMono Submodule.toSubMulAction
theorem Submodule.toSubMulAction_mono {R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] [Module R M] :
Monotone Submodule.toSubMulAction
theorem Submodule.sum_mem {R : Type u} {M : Type v} {ι : Type w} [Semiring R] [AddCommMonoid M] {module_M : Module R M} (p : Submodule R M) {t : Finset ι} {f : ιM} :
(∀ ct, f c p)it, f i p
theorem Submodule.sum_smul_mem {R : Type u} {M : Type v} {ι : Type w} [Semiring R] [AddCommMonoid M] {module_M : Module R M} (p : Submodule R M) {t : Finset ι} {f : ιM} (r : ιR) (hyp : ct, f c p) :
it, r i f i p
instance Submodule.isCentralScalar {S : Type u'} {R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] {module_M : Module R M} (p : Submodule R M) [SMul S R] [SMul S M] [IsScalarTower S R M] [SMul Sᵐᵒᵖ R] [SMul Sᵐᵒᵖ M] [IsScalarTower Sᵐᵒᵖ R M] [IsCentralScalar S M] :
Equations
  • =
instance Submodule.noZeroSMulDivisors {R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] {module_M : Module R M} (p : Submodule R M) [NoZeroSMulDivisors R M] :
Equations
  • =

Additive actions by Submodules #

These instances transfer the action by an element m : M of an R-module M written as m +ᵥ a onto the action by an element s : S of a submodule S : Submodule R M such that s +ᵥ a = (s : M) +ᵥ a. These instances work particularly well in conjunction with AddGroup.toAddAction, enabling s +ᵥ m as an alias for ↑s + m.

instance Submodule.instVAddSubtypeMem {R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] {module_M : Module R M} (p : Submodule R M) {α : Type u_1} [VAdd M α] :
VAdd (↥p) α
Equations
  • p.instVAddSubtypeMem = p.vadd
instance Submodule.vaddCommClass {R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] {module_M : Module R M} (p : Submodule R M) {α : Type u_1} {β : Type u_2} [VAdd M β] [VAdd α β] [VAddCommClass M α β] :
VAddCommClass (↥p) α β
Equations
  • =
instance Submodule.instFaithfulVAddSubtypeMem {R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] {module_M : Module R M} (p : Submodule R M) {α : Type u_1} [VAdd M α] [FaithfulVAdd M α] :
FaithfulVAdd (↥p) α
Equations
  • =
theorem Submodule.vadd_def {R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] {module_M : Module R M} {p : Submodule R M} {α : Type u_1} [VAdd M α] (g : p) (m : α) :
g +ᵥ m = g +ᵥ m
theorem Submodule.toAddSubgroup_strictMono {R : Type u} {M : Type v} [Ring R] [AddCommGroup M] {module_M : Module R M} :
StrictMono Submodule.toAddSubgroup
theorem Submodule.toAddSubgroup_le {R : Type u} {M : Type v} [Ring R] [AddCommGroup M] {module_M : Module R M} (p p' : Submodule R M) :
p.toAddSubgroup p'.toAddSubgroup p p'
theorem Submodule.toAddSubgroup_mono {R : Type u} {M : Type v} [Ring R] [AddCommGroup M] {module_M : Module R M} :
Monotone Submodule.toAddSubgroup
theorem Submodule.neg_coe {R : Type u} {M : Type v} [Ring R] [AddCommGroup M] {module_M : Module R M} (p : Submodule R M) :
-p = p
theorem Submodule.not_mem_of_ortho {R : Type u} {M : Type v} [Ring R] [IsDomain R] [AddCommGroup M] [Module R M] {x : M} {N : Submodule R M} (ortho : ∀ (c : R), yN, c x + y = 0c = 0) :
xN
theorem Submodule.ne_zero_of_ortho {R : Type u} {M : Type v} [Ring R] [IsDomain R] [AddCommGroup M] [Module R M] {x : M} {N : Submodule R M} (ortho : ∀ (c : R), yN, c x + y = 0c = 0) :
x 0
theorem Submodule.smul_mem_iff {S : Type u'} {R : Type u} {M : Type v} [DivisionSemiring S] [Semiring R] [AddCommMonoid M] [Module R M] [SMul S R] [Module S M] [IsScalarTower S R M] (p : Submodule R M) {s : S} {x : M} (s0 : s 0) :
s x p x p
@[reducible, inline]
abbrev Subspace (R : Type u) (M : Type v) [DivisionRing R] [AddCommGroup M] [Module R M] :

Subspace of a vector space. Defined to equal Submodule.

Equations
Instances For