Documentation

Mathlib.Combinatorics.SimpleGraph.Regularity.Uniform

Graph uniformity and uniform partitions #

In this file we define uniformity of a pair of vertices in a graph and uniformity of a partition of vertices of a graph. Both are also known as ε-regularity.

Finsets of vertices s and t are ε-uniform in a graph G if their edge density is at most ε-far from the density of any big enough s' and t' where s' ⊆ s, t' ⊆ t. The definition is pretty technical, but it amounts to the edges between s and t being "random" The literature contains several definitions which are equivalent up to scaling ε by some constant when the partition is equitable.

A partition P of the vertices is ε-uniform if the proportion of non ε-uniform pairs of parts is less than ε.

Main declarations #

References #

[Yaël Dillies, Bhavik Mehta, Formalising Szemerédi’s Regularity Lemma in Lean][srl_itp]

Graph uniformity #

def SimpleGraph.IsUniform {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] (G : SimpleGraph α) [DecidableRel G.Adj] (ε : 𝕜) (s t : Finset α) :

A pair of finsets of vertices is ε-uniform (aka ε-regular) iff their edge density is close to the density of any big enough pair of subsets. Intuitively, the edges between them are random-like.

Equations
  • G.IsUniform ε s t = ∀ ⦃s' : Finset α⦄, s' s∀ ⦃t' : Finset α⦄, t' ts.card * ε s'.cardt.card * ε t'.card|(G.edgeDensity s' t') - (G.edgeDensity s t)| < ε
Instances For
    instance SimpleGraph.IsUniform.instDecidableRel {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] {G : SimpleGraph α} [DecidableRel G.Adj] {ε : 𝕜} :
    DecidableRel (G.IsUniform ε)
    Equations
    • SimpleGraph.IsUniform.instDecidableRel = id inferInstance
    theorem SimpleGraph.IsUniform.mono {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] {G : SimpleGraph α} [DecidableRel G.Adj] {ε : 𝕜} {s t : Finset α} {ε' : 𝕜} (h : ε ε') (hε : G.IsUniform ε s t) :
    G.IsUniform ε' s t
    theorem SimpleGraph.IsUniform.symm {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] {G : SimpleGraph α} [DecidableRel G.Adj] {ε : 𝕜} :
    Symmetric (G.IsUniform ε)
    theorem SimpleGraph.isUniform_comm {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] (G : SimpleGraph α) [DecidableRel G.Adj] {ε : 𝕜} {s t : Finset α} :
    G.IsUniform ε s t G.IsUniform ε t s
    theorem SimpleGraph.isUniform_one {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] (G : SimpleGraph α) [DecidableRel G.Adj] {s t : Finset α} :
    G.IsUniform 1 s t
    theorem SimpleGraph.IsUniform.pos {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] {G : SimpleGraph α} [DecidableRel G.Adj] {ε : 𝕜} {s t : Finset α} (hG : G.IsUniform ε s t) :
    0 < ε
    @[simp]
    theorem SimpleGraph.isUniform_singleton {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] {G : SimpleGraph α} [DecidableRel G.Adj] {ε : 𝕜} {a b : α} :
    G.IsUniform ε {a} {b} 0 < ε
    theorem SimpleGraph.not_isUniform_zero {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] {G : SimpleGraph α} [DecidableRel G.Adj] {s t : Finset α} :
    ¬G.IsUniform 0 s t
    theorem SimpleGraph.not_isUniform_iff {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] {G : SimpleGraph α} [DecidableRel G.Adj] {ε : 𝕜} {s t : Finset α} :
    ¬G.IsUniform ε s t s's, t't, s.card * ε s'.card t.card * ε t'.card ε |G.edgeDensity s' t' - G.edgeDensity s t|
    noncomputable def SimpleGraph.nonuniformWitnesses {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] (G : SimpleGraph α) [DecidableRel G.Adj] (ε : 𝕜) (s t : Finset α) :

    An arbitrary pair of subsets witnessing the non-uniformity of (s, t). If (s, t) is uniform, returns (s, t). Witnesses for (s, t) and (t, s) don't necessarily match. See SimpleGraph.nonuniformWitness.

    Equations
    • G.nonuniformWitnesses ε s t = if h : ¬G.IsUniform ε s t then (.choose, .choose) else (s, t)
    Instances For
      theorem SimpleGraph.left_nonuniformWitnesses_subset {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] (G : SimpleGraph α) [DecidableRel G.Adj] {ε : 𝕜} {s t : Finset α} (h : ¬G.IsUniform ε s t) :
      (G.nonuniformWitnesses ε s t).1 s
      theorem SimpleGraph.left_nonuniformWitnesses_card {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] (G : SimpleGraph α) [DecidableRel G.Adj] {ε : 𝕜} {s t : Finset α} (h : ¬G.IsUniform ε s t) :
      s.card * ε (G.nonuniformWitnesses ε s t).1.card
      theorem SimpleGraph.right_nonuniformWitnesses_subset {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] (G : SimpleGraph α) [DecidableRel G.Adj] {ε : 𝕜} {s t : Finset α} (h : ¬G.IsUniform ε s t) :
      (G.nonuniformWitnesses ε s t).2 t
      theorem SimpleGraph.right_nonuniformWitnesses_card {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] (G : SimpleGraph α) [DecidableRel G.Adj] {ε : 𝕜} {s t : Finset α} (h : ¬G.IsUniform ε s t) :
      t.card * ε (G.nonuniformWitnesses ε s t).2.card
      theorem SimpleGraph.nonuniformWitnesses_spec {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] (G : SimpleGraph α) [DecidableRel G.Adj] {ε : 𝕜} {s t : Finset α} (h : ¬G.IsUniform ε s t) :
      ε |G.edgeDensity (G.nonuniformWitnesses ε s t).1 (G.nonuniformWitnesses ε s t).2 - G.edgeDensity s t|
      noncomputable def SimpleGraph.nonuniformWitness {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] (G : SimpleGraph α) [DecidableRel G.Adj] (ε : 𝕜) (s t : Finset α) :

      Arbitrary witness of non-uniformity. G.nonuniformWitness ε s t and G.nonuniformWitness ε t s form a pair of subsets witnessing the non-uniformity of (s, t). If (s, t) is uniform, returns s.

      Equations
      • G.nonuniformWitness ε s t = if WellOrderingRel s t then (G.nonuniformWitnesses ε s t).1 else (G.nonuniformWitnesses ε t s).2
      Instances For
        theorem SimpleGraph.nonuniformWitness_subset {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] (G : SimpleGraph α) [DecidableRel G.Adj] {ε : 𝕜} {s t : Finset α} (h : ¬G.IsUniform ε s t) :
        G.nonuniformWitness ε s t s
        theorem SimpleGraph.le_card_nonuniformWitness {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] (G : SimpleGraph α) [DecidableRel G.Adj] {ε : 𝕜} {s t : Finset α} (h : ¬G.IsUniform ε s t) :
        s.card * ε (G.nonuniformWitness ε s t).card
        theorem SimpleGraph.nonuniformWitness_spec {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] (G : SimpleGraph α) [DecidableRel G.Adj] {ε : 𝕜} {s t : Finset α} (h₁ : s t) (h₂ : ¬G.IsUniform ε s t) :
        ε |G.edgeDensity (G.nonuniformWitness ε s t) (G.nonuniformWitness ε t s) - G.edgeDensity s t|

        Uniform partitions #

        def Finpartition.sparsePairs {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} (P : Finpartition A) (G : SimpleGraph α) [DecidableRel G.Adj] (ε : 𝕜) :

        The pairs of parts of a partition P which are not ε-dense in a graph G. Note that we dismiss the diagonal. We do not care whether s is ε-dense with itself.

        Equations
        Instances For
          @[simp]
          theorem Finpartition.mk_mem_sparsePairs {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} (P : Finpartition A) (G : SimpleGraph α) [DecidableRel G.Adj] (u v : Finset α) (ε : 𝕜) :
          (u, v) P.sparsePairs G ε u P.parts v P.parts u v (G.edgeDensity u v) < ε
          theorem Finpartition.sparsePairs_mono {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} (P : Finpartition A) (G : SimpleGraph α) [DecidableRel G.Adj] {ε ε' : 𝕜} (h : ε ε') :
          P.sparsePairs G ε P.sparsePairs G ε'
          def Finpartition.nonUniforms {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} (P : Finpartition A) (G : SimpleGraph α) [DecidableRel G.Adj] (ε : 𝕜) :

          The pairs of parts of a partition P which are not ε-uniform in a graph G. Note that we dismiss the diagonal. We do not care whether s is ε-uniform with itself.

          Equations
          Instances For
            @[simp]
            theorem Finpartition.mk_mem_nonUniforms {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} (P : Finpartition A) (G : SimpleGraph α) [DecidableRel G.Adj] {ε : 𝕜} {u v : Finset α} :
            (u, v) P.nonUniforms G ε u P.parts v P.parts u v ¬G.IsUniform ε u v
            theorem Finpartition.nonUniforms_mono {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} (P : Finpartition A) (G : SimpleGraph α) [DecidableRel G.Adj] {ε ε' : 𝕜} (h : ε ε') :
            P.nonUniforms G ε' P.nonUniforms G ε
            theorem Finpartition.nonUniforms_bot {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} (G : SimpleGraph α) [DecidableRel G.Adj] {ε : 𝕜} (hε : 0 < ε) :
            .nonUniforms G ε =
            def Finpartition.IsUniform {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} (P : Finpartition A) (G : SimpleGraph α) [DecidableRel G.Adj] (ε : 𝕜) :

            A finpartition of a graph's vertex set is ε-uniform (aka ε-regular) iff the proportion of its pairs of parts that are not ε-uniform is at most ε.

            Equations
            • P.IsUniform G ε = ((P.nonUniforms G ε).card (P.parts.card * (P.parts.card - 1)) * ε)
            Instances For
              theorem Finpartition.bot_isUniform {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} (G : SimpleGraph α) [DecidableRel G.Adj] {ε : 𝕜} (hε : 0 < ε) :
              .IsUniform G ε
              theorem Finpartition.isUniform_one {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} (P : Finpartition A) (G : SimpleGraph α) [DecidableRel G.Adj] :
              P.IsUniform G 1
              theorem Finpartition.IsUniform.mono {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} {P : Finpartition A} {G : SimpleGraph α} [DecidableRel G.Adj] {ε ε' : 𝕜} (hP : P.IsUniform G ε) (h : ε ε') :
              P.IsUniform G ε'
              theorem Finpartition.isUniformOfEmpty {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} {P : Finpartition A} {G : SimpleGraph α} [DecidableRel G.Adj] {ε : 𝕜} (hP : P.parts = ) :
              P.IsUniform G ε
              theorem Finpartition.nonempty_of_not_uniform {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} {P : Finpartition A} {G : SimpleGraph α} [DecidableRel G.Adj] {ε : 𝕜} (h : ¬P.IsUniform G ε) :
              P.parts.Nonempty
              noncomputable def Finpartition.nonuniformWitnesses {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} (P : Finpartition A) (G : SimpleGraph α) [DecidableRel G.Adj] (ε : 𝕜) (s : Finset α) :

              A choice of witnesses of non-uniformity among the parts of a finpartition.

              Equations
              Instances For
                theorem Finpartition.nonuniformWitness_mem_nonuniformWitnesses {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} {P : Finpartition A} {G : SimpleGraph α} [DecidableRel G.Adj] {ε : 𝕜} {s t : Finset α} (h : ¬G.IsUniform ε s t) (ht : t P.parts) (hst : s t) :
                G.nonuniformWitness ε s t P.nonuniformWitnesses G ε s

                Equipartitions #

                theorem Finpartition.IsEquipartition.card_interedges_sparsePairs_le' {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} {P : Finpartition A} {G : SimpleGraph α} [DecidableRel G.Adj] {ε : 𝕜} (hP : P.IsEquipartition) (hε : 0 ε) :
                ((P.sparsePairs G ε).biUnion fun (x : Finset α × Finset α) => match x with | (U, V) => G.interedges U V).card ε * (A.card + P.parts.card) ^ 2
                theorem Finpartition.IsEquipartition.card_interedges_sparsePairs_le {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} {P : Finpartition A} {G : SimpleGraph α} [DecidableRel G.Adj] {ε : 𝕜} (hP : P.IsEquipartition) (hε : 0 ε) :
                ((P.sparsePairs G ε).biUnion fun (x : Finset α × Finset α) => match x with | (U, V) => G.interedges U V).card 4 * ε * A.card ^ 2
                theorem Finpartition.IsEquipartition.card_biUnion_offDiag_le' {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} {P : Finpartition A} (hP : P.IsEquipartition) :
                (P.parts.biUnion Finset.offDiag).card A.card * (A.card + P.parts.card) / P.parts.card
                theorem Finpartition.IsEquipartition.card_biUnion_offDiag_le {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} {P : Finpartition A} {ε : 𝕜} (hε : 0 < ε) (hP : P.IsEquipartition) (hP' : 4 / ε P.parts.card) :
                (P.parts.biUnion Finset.offDiag).card ε / 2 * A.card ^ 2
                theorem Finpartition.IsEquipartition.sum_nonUniforms_lt' {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} {P : Finpartition A} {G : SimpleGraph α} [DecidableRel G.Adj] {ε : 𝕜} (hA : A.Nonempty) (hε : 0 < ε) (hP : P.IsEquipartition) (hG : P.IsUniform G ε) :
                iP.nonUniforms G ε, i.1.card * i.2.card < ε * (A.card + P.parts.card) ^ 2
                theorem Finpartition.IsEquipartition.sum_nonUniforms_lt {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} {P : Finpartition A} {G : SimpleGraph α} [DecidableRel G.Adj] {ε : 𝕜} (hA : A.Nonempty) (hε : 0 < ε) (hP : P.IsEquipartition) (hG : P.IsUniform G ε) :
                ((P.nonUniforms G ε).biUnion fun (x : Finset α × Finset α) => match x with | (U, V) => U ×ˢ V).card < 4 * ε * A.card ^ 2

                Reduced graph #

                def SimpleGraph.regularityReduced {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} (P : Finpartition A) (G : SimpleGraph α) [DecidableRel G.Adj] (ε δ : 𝕜) :

                The reduction of the graph G along partition P has edges between ε-uniform pairs of parts that have edge density at least δ.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem SimpleGraph.regularityReduced_adj {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} (P : Finpartition A) (G : SimpleGraph α) [DecidableRel G.Adj] (ε δ : 𝕜) (a b : α) :
                  (SimpleGraph.regularityReduced P G ε δ).Adj a b = (G.Adj a b UP.parts, VP.parts, a U b V U V G.IsUniform ε U V δ (G.edgeDensity U V))
                  theorem SimpleGraph.regularityReduced_le {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} {P : Finpartition A} {G : SimpleGraph α} [DecidableRel G.Adj] {ε δ : 𝕜} :
                  theorem SimpleGraph.regularityReduced_mono {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} {P : Finpartition A} {G : SimpleGraph α} [DecidableRel G.Adj] {δ ε₁ ε₂ : 𝕜} (hε : ε₁ ε₂) :
                  theorem SimpleGraph.regularityReduced_anti {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} {P : Finpartition A} {G : SimpleGraph α} [DecidableRel G.Adj] {ε δ₁ δ₂ : 𝕜} (hδ : δ₁ δ₂) :
                  theorem SimpleGraph.unreduced_edges_subset {α : Type u_1} {𝕜 : Type u_2} [LinearOrderedField 𝕜] [DecidableEq α] {A : Finset α} {P : Finpartition A} {G : SimpleGraph α} [DecidableRel G.Adj] {ε : 𝕜} :
                  Finset.filter (fun (x : α × α) => match x with | (x, y) => G.Adj x y ¬(SimpleGraph.regularityReduced P G (ε / 8) (ε / 4)).Adj x y) (A ×ˢ A) ((P.nonUniforms G (ε / 8)).biUnion fun (x : Finset α × Finset α) => match x with | (U, V) => U ×ˢ V) P.parts.biUnion Finset.offDiag (P.sparsePairs G (ε / 4)).biUnion fun (x : Finset α × Finset α) => match x with | (U, V) => G.interedges U V