Documentation

Mathlib.NumberTheory.Divisors

Divisor Finsets #

This file defines sets of divisors of a natural number. This is particularly useful as background for defining Dirichlet convolution.

Main Definitions #

Let n : ℕ. All of the following definitions are in the Nat namespace:

Implementation details #

Tags #

divisors, perfect numbers

divisors n is the Finset of divisors of n. As a special case, divisors 0 = ∅.

Equations

properDivisors n is the Finset of divisors of n, other than n. As a special case, properDivisors 0 = ∅.

Equations

divisorsAntidiagonal n is the Finset of pairs (x,y) such that x * y = n. As a special case, divisorsAntidiagonal 0 = ∅.

Equations
@[simp]
theorem Nat.filter_dvd_eq_divisors {n : } (h : n 0) :
Finset.filter (fun (d : ) => d n) (Finset.range n.succ) = n.divisors
@[simp]
theorem Nat.filter_dvd_eq_properDivisors {n : } (h : n 0) :
Finset.filter (fun (d : ) => d n) (Finset.range n) = n.properDivisors
theorem Nat.properDivisors.not_self_mem {n : } :
nn.properDivisors
@[simp]
theorem Nat.mem_properDivisors {n m : } :
n m.properDivisors n m n < m
theorem Nat.insert_self_properDivisors {n : } (h : n 0) :
insert n n.properDivisors = n.divisors
theorem Nat.cons_self_properDivisors {n : } (h : n 0) :
Finset.cons n n.properDivisors = n.divisors
@[simp]
theorem Nat.mem_divisors {n m : } :
n m.divisors n m m 0
theorem Nat.one_mem_divisors {n : } :
1 n.divisors n 0
theorem Nat.mem_divisors_self (n : ) (h : n 0) :
n n.divisors
theorem Nat.dvd_of_mem_divisors {n m : } (h : n m.divisors) :
n m
@[simp]
theorem Nat.mem_divisorsAntidiagonal {n : } {x : × } :
x n.divisorsAntidiagonal x.1 * x.2 = n n 0
theorem Nat.ne_zero_of_mem_divisorsAntidiagonal {n : } {p : × } (hp : p n.divisorsAntidiagonal) :
p.1 0 p.2 0
theorem Nat.left_ne_zero_of_mem_divisorsAntidiagonal {n : } {p : × } (hp : p n.divisorsAntidiagonal) :
p.1 0
theorem Nat.right_ne_zero_of_mem_divisorsAntidiagonal {n : } {p : × } (hp : p n.divisorsAntidiagonal) :
p.2 0
theorem Nat.divisor_le {n m : } :
n m.divisorsn m
theorem Nat.divisors_subset_of_dvd {n m : } (hzero : n 0) (h : m n) :
m.divisors n.divisors
theorem Nat.divisors_subset_properDivisors {n m : } (hzero : n 0) (h : m n) (hdiff : m n) :
m.divisors n.properDivisors
theorem Nat.divisors_filter_dvd_of_dvd {n m : } (hn : n 0) (hm : m n) :
Finset.filter (fun (d : ) => d m) n.divisors = m.divisors
@[simp]
theorem Nat.nonempty_divisors {n : } :
n.divisors.Nonempty n 0
@[simp]
theorem Nat.divisors_eq_empty {n : } :
n.divisors = n = 0
theorem Nat.properDivisors_subset_divisors {n : } :
n.properDivisors n.divisors
@[simp]
theorem Nat.pos_of_mem_divisors {n m : } (h : m n.divisors) :
0 < m
theorem Nat.pos_of_mem_properDivisors {n m : } (h : m n.properDivisors) :
0 < m
theorem Nat.one_mem_properDivisors_iff_one_lt {n : } :
1 n.properDivisors 1 < n
@[simp]
theorem Nat.sup_divisors_id (n : ) :
n.divisors.sup id = n
theorem Nat.one_lt_of_mem_properDivisors {m n : } (h : m n.properDivisors) :
1 < n
theorem Nat.one_lt_div_of_mem_properDivisors {m n : } (h : m n.properDivisors) :
1 < n / m
theorem Nat.mem_properDivisors_iff_exists {m n : } (hn : n 0) :
m n.properDivisors k > 1, n = m * k

See also Nat.mem_properDivisors.

@[simp]
theorem Nat.nonempty_properDivisors {n : } :
n.properDivisors.Nonempty 1 < n
@[simp]
theorem Nat.properDivisors_eq_empty {n : } :
n.properDivisors = n 1
theorem Nat.swap_mem_divisorsAntidiagonal {n : } {x : × } :
x.swap n.divisorsAntidiagonal x n.divisorsAntidiagonal
@[simp]
theorem Nat.swap_mem_divisorsAntidiagonal_aux {n : } {x : × } :
x.2 * x.1 = n ¬n = 0 x n.divisorsAntidiagonal
theorem Nat.fst_mem_divisors_of_mem_antidiagonal {n : } {x : × } (h : x n.divisorsAntidiagonal) :
x.1 n.divisors
theorem Nat.snd_mem_divisors_of_mem_antidiagonal {n : } {x : × } (h : x n.divisorsAntidiagonal) :
x.2 n.divisors
@[simp]
theorem Nat.map_swap_divisorsAntidiagonal {n : } :
Finset.map (Equiv.prodComm ).toEmbedding n.divisorsAntidiagonal = n.divisorsAntidiagonal
@[simp]
theorem Nat.image_fst_divisorsAntidiagonal {n : } :
Finset.image Prod.fst n.divisorsAntidiagonal = n.divisors
@[simp]
theorem Nat.image_snd_divisorsAntidiagonal {n : } :
Finset.image Prod.snd n.divisorsAntidiagonal = n.divisors
theorem Nat.map_div_right_divisors {n : } :
Finset.map { toFun := fun (d : ) => (d, n / d), inj' := } n.divisors = n.divisorsAntidiagonal
theorem Nat.map_div_left_divisors {n : } :
Finset.map { toFun := fun (d : ) => (n / d, d), inj' := } n.divisors = n.divisorsAntidiagonal
theorem Nat.sum_divisors_eq_sum_properDivisors_add_self {n : } :
in.divisors, i = in.properDivisors, i + n
def Nat.Perfect (n : ) :

n : ℕ is perfect if and only the sum of the proper divisors of n is n and n is positive.

Equations
  • n.Perfect = (in.properDivisors, i = n 0 < n)
theorem Nat.perfect_iff_sum_properDivisors {n : } (h : 0 < n) :
n.Perfect in.properDivisors, i = n
theorem Nat.perfect_iff_sum_divisors_eq_two_mul {n : } (h : 0 < n) :
n.Perfect in.divisors, i = 2 * n
theorem Nat.mem_divisors_prime_pow {p : } (pp : Nat.Prime p) (k : ) {x : } :
x (p ^ k).divisors jk, x = p ^ j
theorem Nat.Prime.divisors {p : } (pp : Nat.Prime p) :
p.divisors = {1, p}
theorem Nat.Prime.properDivisors {p : } (pp : Nat.Prime p) :
p.properDivisors = {1}
theorem Nat.divisors_prime_pow {p : } (pp : Nat.Prime p) (k : ) :
(p ^ k).divisors = Finset.map { toFun := fun (x : ) => p ^ x, inj' := } (Finset.range (k + 1))
@[simp]
theorem Nat.divisors_inj {a b : } :
a.divisors = b.divisors a = b
theorem Nat.eq_properDivisors_of_subset_of_sum_eq_sum {n : } {s : Finset } (hsub : s n.properDivisors) :
xs, x = xn.properDivisors, xs = n.properDivisors
theorem Nat.sum_properDivisors_dvd {n : } (h : xn.properDivisors, x n) :
xn.properDivisors, x = 1 xn.properDivisors, x = n
@[simp]
theorem Nat.Prime.prod_properDivisors {α : Type u_1} [CommMonoid α] {p : } {f : α} (h : Nat.Prime p) :
xp.properDivisors, f x = f 1
@[simp]
theorem Nat.Prime.sum_properDivisors {α : Type u_1} [AddCommMonoid α] {p : } {f : α} (h : Nat.Prime p) :
xp.properDivisors, f x = f 1
@[simp]
theorem Nat.Prime.prod_divisors {α : Type u_1} [CommMonoid α] {p : } {f : α} (h : Nat.Prime p) :
xp.divisors, f x = f p * f 1
@[simp]
theorem Nat.Prime.sum_divisors {α : Type u_1} [AddCommMonoid α] {p : } {f : α} (h : Nat.Prime p) :
xp.divisors, f x = f p + f 1
theorem Nat.sum_properDivisors_eq_one_iff_prime {n : } :
xn.properDivisors, x = 1 Nat.Prime n
theorem Nat.mem_properDivisors_prime_pow {p : } (pp : Nat.Prime p) (k : ) {x : } :
x (p ^ k).properDivisors ∃ (j : ) (_ : j < k), x = p ^ j
theorem Nat.properDivisors_prime_pow {p : } (pp : Nat.Prime p) (k : ) :
(p ^ k).properDivisors = Finset.map { toFun := fun (x : ) => p ^ x, inj' := } (Finset.range k)
@[simp]
theorem Nat.prod_properDivisors_prime_pow {α : Type u_1} [CommMonoid α] {k p : } {f : α} (h : Nat.Prime p) :
x(p ^ k).properDivisors, f x = xFinset.range k, f (p ^ x)
@[simp]
theorem Nat.sum_properDivisors_prime_nsmul {α : Type u_1} [AddCommMonoid α] {k p : } {f : α} (h : Nat.Prime p) :
x(p ^ k).properDivisors, f x = xFinset.range k, f (p ^ x)
@[simp]
theorem Nat.prod_divisors_prime_pow {α : Type u_1} [CommMonoid α] {k p : } {f : α} (h : Nat.Prime p) :
x(p ^ k).divisors, f x = xFinset.range (k + 1), f (p ^ x)
@[simp]
theorem Nat.sum_divisors_prime_pow {α : Type u_1} [AddCommMonoid α] {k p : } {f : α} (h : Nat.Prime p) :
x(p ^ k).divisors, f x = xFinset.range (k + 1), f (p ^ x)
theorem Nat.prod_divisorsAntidiagonal {M : Type u_1} [CommMonoid M] (f : M) {n : } :
in.divisorsAntidiagonal, f i.1 i.2 = in.divisors, f i (n / i)
theorem Nat.sum_divisorsAntidiagonal {M : Type u_1} [AddCommMonoid M] (f : M) {n : } :
in.divisorsAntidiagonal, f i.1 i.2 = in.divisors, f i (n / i)
theorem Nat.prod_divisorsAntidiagonal' {M : Type u_1} [CommMonoid M] (f : M) {n : } :
in.divisorsAntidiagonal, f i.1 i.2 = in.divisors, f (n / i) i
theorem Nat.sum_divisorsAntidiagonal' {M : Type u_1} [AddCommMonoid M] (f : M) {n : } :
in.divisorsAntidiagonal, f i.1 i.2 = in.divisors, f (n / i) i
theorem Nat.primeFactors_eq_to_filter_divisors_prime (n : ) :
n.primeFactors = Finset.filter (fun (p : ) => Nat.Prime p) n.divisors

The factors of n are the prime divisors

@[deprecated Nat.primeFactors_eq_to_filter_divisors_prime]
theorem Nat.prime_divisors_eq_to_filter_divisors_prime (n : ) :
n.primeFactors = Finset.filter (fun (p : ) => Nat.Prime p) n.divisors

Alias of Nat.primeFactors_eq_to_filter_divisors_prime.


The factors of n are the prime divisors

theorem Nat.primeFactors_filter_dvd_of_dvd {m n : } (hn : n 0) (hmn : m n) :
Finset.filter (fun (p : ) => p m) n.primeFactors = m.primeFactors
@[deprecated Nat.primeFactors_filter_dvd_of_dvd]
theorem Nat.prime_divisors_filter_dvd_of_dvd {m n : } (hn : n 0) (hmn : m n) :
Finset.filter (fun (p : ) => p m) n.primeFactors = m.primeFactors

Alias of Nat.primeFactors_filter_dvd_of_dvd.

@[simp]
theorem Nat.image_div_divisors_eq_divisors (n : ) :
Finset.image (fun (x : ) => n / x) n.divisors = n.divisors
theorem Nat.prod_div_divisors {α : Type u_1} [CommMonoid α] (n : ) (f : α) :
dn.divisors, f (n / d) = n.divisors.prod f
theorem Nat.sum_div_divisors {α : Type u_1} [AddCommMonoid α] (n : ) (f : α) :
dn.divisors, f (n / d) = n.divisors.sum f