Zero and Bounded at filter #
Given a filter l
we define the notion of a function being ZeroAtFilter
as well as being
BoundedAtFilter
. Alongside this we construct the Submodule
, AddSubmonoid
of functions
that are ZeroAtFilter
. Similarly, we construct the Submodule
and Subalgebra
of functions
that are BoundedAtFilter
.
def
Filter.ZeroAtFilter
{α : Type u_2}
{β : Type u_3}
[Zero β]
[TopologicalSpace β]
(l : Filter α)
(f : α → β)
:
If l
is a filter on α
, then a function f : α → β
is ZeroAtFilter l
if it tends to zero along l
.
Equations
- l.ZeroAtFilter f = Filter.Tendsto f l (nhds 0)
Instances For
theorem
Filter.zero_zeroAtFilter
{α : Type u_2}
{β : Type u_3}
[Zero β]
[TopologicalSpace β]
(l : Filter α)
:
l.ZeroAtFilter 0
theorem
Filter.ZeroAtFilter.add
{α : Type u_2}
{β : Type u_3}
[TopologicalSpace β]
[AddZeroClass β]
[ContinuousAdd β]
{l : Filter α}
{f g : α → β}
(hf : l.ZeroAtFilter f)
(hg : l.ZeroAtFilter g)
:
l.ZeroAtFilter (f + g)
theorem
Filter.ZeroAtFilter.neg
{α : Type u_2}
{β : Type u_3}
[TopologicalSpace β]
[AddGroup β]
[ContinuousNeg β]
{l : Filter α}
{f : α → β}
(hf : l.ZeroAtFilter f)
:
l.ZeroAtFilter (-f)
theorem
Filter.ZeroAtFilter.smul
{𝕜 : Type u_1}
{α : Type u_2}
{β : Type u_3}
[TopologicalSpace β]
[Zero 𝕜]
[Zero β]
[SMulWithZero 𝕜 β]
[ContinuousConstSMul 𝕜 β]
{l : Filter α}
{f : α → β}
(c : 𝕜)
(hf : l.ZeroAtFilter f)
:
l.ZeroAtFilter (c • f)
def
Filter.zeroAtFilterSubmodule
(𝕜 : Type u_1)
{α : Type u_2}
{β : Type u_3}
[TopologicalSpace β]
[Semiring 𝕜]
[AddCommMonoid β]
[Module 𝕜 β]
[ContinuousAdd β]
[ContinuousConstSMul 𝕜 β]
(l : Filter α)
:
Submodule 𝕜 (α → β)
zeroAtFilterSubmodule l
is the submodule of f : α → β
which
tend to zero along l
.
Equations
- Filter.zeroAtFilterSubmodule 𝕜 l = { carrier := l.ZeroAtFilter, add_mem' := ⋯, zero_mem' := ⋯, smul_mem' := ⋯ }
Instances For
def
Filter.zeroAtFilterAddSubmonoid
{α : Type u_2}
{β : Type u_3}
[TopologicalSpace β]
[AddZeroClass β]
[ContinuousAdd β]
(l : Filter α)
:
AddSubmonoid (α → β)
zeroAtFilterAddSubmonoid l
is the additive submonoid of f : α → β
which tend to zero along l
.
Equations
- l.zeroAtFilterAddSubmonoid = { carrier := l.ZeroAtFilter, add_mem' := ⋯, zero_mem' := ⋯ }
Instances For
theorem
Filter.ZeroAtFilter.boundedAtFilter
{α : Type u_2}
{β : Type u_3}
[NormedAddCommGroup β]
{l : Filter α}
{f : α → β}
(hf : l.ZeroAtFilter f)
:
l.BoundedAtFilter f
theorem
Filter.const_boundedAtFilter
{α : Type u_2}
{β : Type u_3}
[Norm β]
(l : Filter α)
(c : β)
:
l.BoundedAtFilter (Function.const α c)
theorem
Filter.BoundedAtFilter.add
{α : Type u_2}
{β : Type u_3}
[SeminormedAddCommGroup β]
{l : Filter α}
{f g : α → β}
(hf : l.BoundedAtFilter f)
(hg : l.BoundedAtFilter g)
:
l.BoundedAtFilter (f + g)
theorem
Filter.BoundedAtFilter.neg
{α : Type u_2}
{β : Type u_3}
[SeminormedAddCommGroup β]
{l : Filter α}
{f : α → β}
(hf : l.BoundedAtFilter f)
:
l.BoundedAtFilter (-f)
theorem
Filter.BoundedAtFilter.smul
{𝕜 : Type u_1}
{α : Type u_2}
{β : Type u_3}
[SeminormedRing 𝕜]
[SeminormedAddCommGroup β]
[Module 𝕜 β]
[BoundedSMul 𝕜 β]
{l : Filter α}
{f : α → β}
(c : 𝕜)
(hf : l.BoundedAtFilter f)
:
l.BoundedAtFilter (c • f)
theorem
Filter.BoundedAtFilter.mul
{α : Type u_2}
{β : Type u_3}
[SeminormedRing β]
{l : Filter α}
{f g : α → β}
(hf : l.BoundedAtFilter f)
(hg : l.BoundedAtFilter g)
:
l.BoundedAtFilter (f * g)
def
Filter.boundedFilterSubmodule
(𝕜 : Type u_1)
{α : Type u_2}
{β : Type u_3}
[SeminormedRing 𝕜]
[SeminormedAddCommGroup β]
[Module 𝕜 β]
[BoundedSMul 𝕜 β]
(l : Filter α)
:
Submodule 𝕜 (α → β)
The submodule of functions that are bounded along a filter l
.
Equations
- Filter.boundedFilterSubmodule 𝕜 l = { carrier := l.BoundedAtFilter, add_mem' := ⋯, zero_mem' := ⋯, smul_mem' := ⋯ }
Instances For
def
Filter.boundedFilterSubalgebra
(𝕜 : Type u_1)
{α : Type u_2}
{β : Type u_3}
[SeminormedCommRing 𝕜]
[SeminormedRing β]
[Algebra 𝕜 β]
[BoundedSMul 𝕜 β]
(l : Filter α)
:
Subalgebra 𝕜 (α → β)
The subalgebra of functions that are bounded along a filter l
.
Equations
- Filter.boundedFilterSubalgebra 𝕜 l = (Filter.boundedFilterSubmodule 𝕜 l).toSubalgebra ⋯ ⋯