Bounded at infinity #
For complex valued functions on the upper half plane, this file defines the filter
UpperHalfPlane.atImInfty
required for defining when functions are bounded at infinity and zero at
infinity. Both of which are relevant for defining modular forms.
Filter for approaching i∞
.
Equations
- UpperHalfPlane.atImInfty = Filter.comap UpperHalfPlane.im Filter.atTop
Instances For
theorem
UpperHalfPlane.atImInfty_basis :
UpperHalfPlane.atImInfty.HasBasis (fun (x : ℝ) => True) fun (i : ℝ) => UpperHalfPlane.im ⁻¹' Set.Ici i
theorem
UpperHalfPlane.atImInfty_mem
(S : Set UpperHalfPlane)
:
S ∈ UpperHalfPlane.atImInfty ↔ ∃ (A : ℝ), ∀ (z : UpperHalfPlane), A ≤ z.im → z ∈ S
A function f : ℍ → α
is bounded at infinity if it is bounded along atImInfty
.
Equations
- UpperHalfPlane.IsBoundedAtImInfty f = UpperHalfPlane.atImInfty.BoundedAtFilter f
Instances For
def
UpperHalfPlane.IsZeroAtImInfty
{α : Type u_1}
[Zero α]
[TopologicalSpace α]
(f : UpperHalfPlane → α)
:
A function f : ℍ → α
is zero at infinity it is zero along atImInfty
.
Equations
- UpperHalfPlane.IsZeroAtImInfty f = UpperHalfPlane.atImInfty.ZeroAtFilter f
Instances For
def
UpperHalfPlane.zeroAtImInftySubmodule
(α : Type u_1)
[NormedField α]
:
Submodule α (UpperHalfPlane → α)
Module of functions that are zero at infinity.
Equations
Instances For
def
UpperHalfPlane.boundedAtImInftySubalgebra
(α : Type u_1)
[NormedField α]
:
Subalgebra α (UpperHalfPlane → α)
Subalgebra of functions that are bounded at infinity.
Equations
Instances For
theorem
UpperHalfPlane.IsBoundedAtImInfty.mul
{f g : UpperHalfPlane → ℂ}
(hf : UpperHalfPlane.IsBoundedAtImInfty f)
(hg : UpperHalfPlane.IsBoundedAtImInfty g)
:
theorem
UpperHalfPlane.bounded_mem
(f : UpperHalfPlane → ℂ)
:
UpperHalfPlane.IsBoundedAtImInfty f ↔ ∃ (M : ℝ) (A : ℝ), ∀ (z : UpperHalfPlane), A ≤ z.im → Complex.abs (f z) ≤ M
theorem
UpperHalfPlane.zero_at_im_infty
(f : UpperHalfPlane → ℂ)
:
UpperHalfPlane.IsZeroAtImInfty f ↔ ∀ (ε : ℝ), 0 < ε → ∃ (A : ℝ), ∀ (z : UpperHalfPlane), A ≤ z.im → Complex.abs (f z) ≤ ε