2 Bertrand’s postulate
For any positive natural number, there is a prime which is greater than it, but no more than twice as large.
TODO: make this follow the book proof more closely!
2.1 Appendix: Some estimates
For all \(n \in \mathbb {N}\)
\[ \log n + \frac1n {\lt} H_n {\lt} \log n + 1. \]
TODO
For all \(n \in \mathbb {N}\)
\[ n! = n(n -1)! {\lt} ne^{n \log n - n + 1}= e\left(\frac ne\right)^n. \]
TODO
\[ \binom {n}{k} \le \frac{n^k}{k!} \le \frac{n^k}{2^{k - 1}} \]
TODO