Formal Book

15 The Borromean rings don’t exist

Theorem 15.1

If a link consists of disjoint perfect circles that are pairwise not linked, then the link is trivial

Proof

TODO

Theorem 15.2

The Borromean rings are nontrivial, and they are also not equivalent to Tait’s link No. 18

Proof

TODO

Theorem 15.3

The Borromean rings cannot be build from three perfect circles

Proof

TODO